SCIENTIST CINDY
  • Home
  • Anatomy
    • Anatomy - CMC Home Page
      • Practical Exam #2 REDEMPTION EXAM!
      • Practical Exam #3
      • Practical Exam #4
      • Practical Exam #5
      • Practical Exam #6
      • Lab Quiz 4
      • Lab Quiz 5
    • Anatomy Basics
      • Intro to Anatomy
      • Medical Terminology
      • A History of Anatomy
      • Levels of Organization
      • Anatomical Positions
      • Anatomical Planes
      • Anatomical Regions
      • Body Cavities and Membranes
    • Cells Portal
      • Anatomy of the Cell SAC
      • Membrane Transport
      • The Cell Cycle
      • REGULATION of The Cell Cycle
      • BLOOD CELLS
      • mitosis
    • Tissues Portal SAC
      • The Integumentary System
      • Epithelial Tissues
      • Connective Tissue
      • Muscle Tissue
      • BONES AND SKELETAL TISSUES
      • Cartilage SAC
    • Organ Systems
    • Portal to the Skeletal system
      • The SKULL ANATOMY
      • the Thoracic Cage
      • the vertebral column
      • The Appendicular Skeleton
      • BONES AND SKELETAL TISSUES
      • joints
    • The Muscular System Portal
      • Muscle Tissue
      • Muscles - Intramuscular Injection Sites - WCU
      • Muscles of the Body - Review
    • The Nervous System
      • Introduction to the Nervous System
      • Nervous Tissue
      • The Brain - Anat
      • The Ear - Sensory Organs
      • The Eye - Sensory Organs
    • THE REPRODUCTIVE SYSTEM
    • The Renal System
    • The Respiratory System
    • THE CIRCULATORY SYSTEM PORTAL
      • Intro to the Circulatory System
      • THE HEART
      • HEART DISSECTION PHOTO GALLERY
      • THE VESSELS OF BLOOD CIRCULATION
    • Digestive System
    • Animal Dissection (Virtual)
    • dissection of the fetal pig
  • Physiology
    • Homeostasis - Physio
    • Chemical Reactions - Physio
    • Chemistry of Life - Inorganic - Physio
    • The Chemistry of Cells - ORGANIC - Physio
    • Chemical Bonds - Physio
    • Metabolism - Physio
    • Portal to the Skeletal system
    • Endocrine and Homeostasis physio
    • Muscle Physiology
    • Blood
    • Cardiovascular System
    • Lymphatic System
    • Respiratory System Physiology
    • Renal System
    • Digestive System
    • Reproductive System
  • CMC Physiology Lab
    • Lab 1 - Surface Area to Volume Ratios
    • Lab 2 - Osmosis
    • Lab 4 - Heart Rate and Barometers
    • Lab 5 - Virtual Neuron Lab
    • Case Study One
  • Anat & Physio
    • The Muscular System Portal
    • The Integumentary System a&p
      • The Epidermis
      • The Dermis
      • The Epidermis rio
      • Connective Tissue
  • Biology of Human Pregnancy
    • Course Calendar - BIO 3070
    • Bio of Pregnancy - SYLLABUS
    • Course Information
    • Evolution of Human Pregnancy
    • History of Human Pregnancy
    • Myths of Pregnancy and Fertility
    • Female Reproductive System
    • The Menstrual Cycle
    • The Male Reproductive System and Male Contraception
    • Fertility and Conception
    • In-Vitro Fertilization
    • Infertility
    • Genetics of Reproduction
    • Prenatal and Maternity Care
    • The Pregnant Body
    • fetal development
    • Development of the Nervous System
    • Stages of Labor
    • Postpartum Issues
    • Twins
  • Chemistry
    • pH Lab
    • The Chemistry of Cells - ORGANIC
      • VOLCANO LAB
    • Volcano Project
  • College/Life Skills
    • Online Professionalism
    • Advising Resources
    • INTERVIEW SKILLS AND RESUME WRITING
    • DIVERSITY
    • CAMPUS EVENTS
      • Predation
    • Time Management
  • Environmental Science
    • MIDTERM 2 STUDY GUIDE
    • Exam 2 Study Guide
    • ENVS 105 Home Page
      • Midterm 3 Study Guide Population Ecology
      • Ecology II - Communities and Ecosystems
      • Module 1 Assignments
      • Module 2 Assignments
    • Inrtoduction to ENV SCI
    • Historical Perspective of ​Environmental Science
    • Biomes
    • FOOD CHAIN and FOOD WEB
    • Biogeochemical Recycling
    • Evolution - Our Beginning
    • Genetic Inheritance
    • Evolution: How Populations Change over Time
    • Symbiosis
    • Population Ecology
    • Competition in Nature
    • Herbivory
    • Niches
    • Fossil Fuels
  • Environmental Biology Laboratory
    • SOILS AND GROUNDWATER
    • Ecological Roles of Living Organisms
      • The Basics
      • Bacteria - Ecological Roles
      • Protists - Ecological Roles
      • Fungus - Ecological Roles
      • Plantae and Animalia - Ecological Roles
    • Virtual FIELD TRIP TO THE RIO HONDO COLLEGE ​WILDLIFE SANCTUARY - Adaptations to Dry Climates
    • Microscopic Plant Adaptations
    • Natural Selection
    • GROWTH CURVES
    • SOILS AND GROUNDWATER
    • LC50 and LD50
    • How to Make a Solar Water Heater
    • WATER QUALITY ANALYSIS
  • General Biology
    • Characteristics of Life
    • Chemistry of Life - Inorganic
    • The Chemistry of Cells - ORGANIC
    • Introduction to The Cell
    • Photosynthesis and cellular Respiration
    • Cell Membranes and Osmosis
    • The Cell Cycle
    • REGULATION of The Cell Cycle
    • Mitosis
    • Meiosis
    • The Structure of DNA
    • Evolution
  • General Biology Laboratory
    • GENERAL BIOLOGY 101 LABORATORY HOME PAGE
      • Enzymes
      • OSMOSIS LAB
      • Lab 1 - Bacteria, Protista and Fungi
      • Lab 2 - Plantae and Animalia
      • Photosynthesis
      • Lab 5 - Introduction to Cells
      • Lab 6 - The Chemistry of Cells
      • Lab 7 - Membrane Transport
      • Lab 8 - Enzymes
      • Lab 9 - Photosynthesis
      • Lab 10 Fermentation, Aerobic Cellular Respiration and Associated Major Organ Systems
    • GENERAL BIO 1110L Labs
      • lab 2 - CELLS - BIO 111L
      • lab 3 - DIFFUSION and OSMOSIS - BIO 111L
      • lab 4 - The Circulatory System - BIO 111L
      • lab 6 - Photosynthesis and Cellular Respiration
      • lab 7 - Reproduction - BIO 111L
      • DNA, GENES AND GENETIC INHERITANCE
      • lab 9 - GENE EXPRESSION AND PROTEIN SYNTHESIS
      • lab 10 - ADAPTATIONS - BIO 111L
      • lab 11 - ECOSYSTEMS AND BIODIVERSITY
  • Human Biology
    • A History of Human Biology
    • Levels of Organization
    • The Chemistry of Cells - ORGANIC
    • Cells
    • Cartilage SAC
    • BONES AND SKELETAL TISSUES
  • Human Biology Lab
    • Testing for Sugar, Starch and Proteins
    • Osmosis, Diffusion and Filtration
    • buffers
    • OSMOSIS LAB
    • Anatomical Planes
    • Body Cavities and Membranes
    • Anatomical Positions
    • The Appendicular Skeleton
    • The SKULL
    • the Thoracic Cage
    • the vertebral column
  • Human Sexuality
    • Course Information
    • Course Calendar
    • Lesson 1 - Introduction to Human Sexuality
    • Lesson 2 - Genetic Inheritance of Human Sexuality
    • Lesson 3 - The Male Reproductive Tract
    • Lesson 4 - The Female Reproductive Tract
    • Lesson 5 - The Menstrual Cycle
    • Midterm Exam Study Guide
    • Lesson 6 - Fetal Development and Sexual Differentiation
    • Lesson 7 - Disorders of Sexual Development
    • Lesson 8 - Gender Identity and Sexual Attraction
    • Lesson 9 - Fetishism
    • Lesson 10 - Sexuality Throughout the World
    • ​Lesson 11 - Sexuality Through the Ages
    • Lesson 12 - Sexual Harassment, Coercion and Violence
    • Final Exam Study Guide
  • Microbiology PORTAL
    • Microbiology - CPP
      • ​Intro to Microorganisms
      • Diseases
      • EPIDEMIOLOGY
      • HOST DEFENSES
      • PATHOGENICITY
      • History of Microbiology
      • Levels of Organization cpp
      • Bacteria versus Archaea
      • Intro. to Bacteria
      • Viruses and Prions
      • Microbial Genetics
      • Microbial Nutrition and Growth
        • Nutritional Categories
        • Microbial Metabolism
        • CONTROL OF BACTERIA GROWTH AND ANTIBIOTICS
      • Eukaryotic Organisms
      • Archaeal Diversity
      • Prokaryotic and Eukaryotic Cells
      • Bacteria vs Archaeal Structures
      • Taxonomic Classifications
      • Archaea, Bacteria and Eukaryotic Cells
      • MIC- CPP Course Calendar
    • Cell Theory
    • Chemistry of Life
      • Chemical Bonds
      • Chemical Reactions
    • Biofilms
    • Definition of Terms
  • Microbiology Laboratory
    • Cell Culture and Inoculations
    • aseptic technique
    • WET MOUNT
    • Streak Plate
    • Mannitol salt agar (MSA) Test
    • Eosin Methylene Blue (EMB)
    • Blood Agar
    • Dilution Series and Calculations
    • Phage Plaque Assay
    • MICROBIOLOGY UNKNOWN LAB
    • Microbiology Lab -study guide exam one
    • Ex 2 - Microorganisms
    • EX 3 - aseptic technique
    • Ex 4 - Smear Prep
    • Ex 5 - Simple Stains
    • Ex 6 - Negative Staining
    • Ex 8 - Gram Stain
    • Ex 9 - Acid-Fast Stain
    • Ex 10 - Endospore Stain
    • Ex 11 - Motility Test
    • ex 12 -​ Pure culture technique
    • ex 13 - UV Radiation
    • Ex 14 - Enumeration of Bacteria : Standard Plate Count
    • ex - 15 Effects of Temperature on Growth
    • ex 16 - Hand-washing
    • ex 17 - pH and microbial growth
    • ex 18 - Evaluation of Antiseptics
    • ex 19 - Antibiotic Sensitivity : Kirby-Bauer Method
  • HISTOTECHNOLOGY
  • The Brain
  • The Brain
  • The Structure of DNA
  • Contact
  • FUN ZONE
    • GAMES
    • Video Vault
    • Population Ecology - ACTIVITY
    • The Carbon Cycle - ACTIVITY
    • Evolution - ACTIVITY
    • The Cell Game
    • SYMBIOSIS ACTIVITY
    • THE LORAX ACTIVITY
    • Brittney the Kidney
    • From Soup to Poop
    • MITOSIS - THE NURSERY RHYME
    • Verne the Sperm and friends
      • Verne the Sperm pg1
        • Verne the Sperm pg2
        • Verne the Sperm pg3
        • Verne the Sperm pg4
        • Verne the Sperm pg5
  • Lab 6 - The Chemistry of Cells
  • A History of Anatomy
  • List of Pages
    • Microscopes
  • Cell Membranes and Osmosis
  • Chemistry of Life
  • Muscle Movements
  • The Muscles of the Head, Trunk and Shoulders
  • The Muscles of the Limbs
  • Nervous Tissue
  • The Brain - Anat and Physiology
  • Instructions for Taking BIO 3070
  • MTH 121 Algebra A - Course Schedule and Info
  • Laboratory Calendar CMC Spring 2019
  • Genetics Lab
  • Chemistry and Conversions Lab
  • Digestion and Enzymes Lab
  • Endocrine and Homeostasis Lab
  • Muscles and Reflexes Lab
  • Sensory Lab
  • Immunohistochemistry
  • Blood Lab
  • Heart Rate, Blood Pressure, Electrocardiogram Lab
  • Respiratory Lab
  • Lab 11 Renal Lab
  • Blood Typing Game
  • Body Systems Interactive
  • Ch 9 - The Central Nervous System
  • Ch 10 - Sensory Systems
  • Neuron Virtual Laboratory
  • Virtual Eye Lab
  • Virtual pH Lab
  • Chemical Bonds Virtual Lab
  • Beer's Law Virtual Lab
  • Build-an-Atom Virtual Lab
  • Diffusion Virtual Lab
  • Ohm's Law Virtual Lab
  • New Page
  • Ch 8 - Nervous System
  • Home
  • Anatomy
    • Anatomy - CMC Home Page
      • Practical Exam #2 REDEMPTION EXAM!
      • Practical Exam #3
      • Practical Exam #4
      • Practical Exam #5
      • Practical Exam #6
      • Lab Quiz 4
      • Lab Quiz 5
    • Anatomy Basics
      • Intro to Anatomy
      • Medical Terminology
      • A History of Anatomy
      • Levels of Organization
      • Anatomical Positions
      • Anatomical Planes
      • Anatomical Regions
      • Body Cavities and Membranes
    • Cells Portal
      • Anatomy of the Cell SAC
      • Membrane Transport
      • The Cell Cycle
      • REGULATION of The Cell Cycle
      • BLOOD CELLS
      • mitosis
    • Tissues Portal SAC
      • The Integumentary System
      • Epithelial Tissues
      • Connective Tissue
      • Muscle Tissue
      • BONES AND SKELETAL TISSUES
      • Cartilage SAC
    • Organ Systems
    • Portal to the Skeletal system
      • The SKULL ANATOMY
      • the Thoracic Cage
      • the vertebral column
      • The Appendicular Skeleton
      • BONES AND SKELETAL TISSUES
      • joints
    • The Muscular System Portal
      • Muscle Tissue
      • Muscles - Intramuscular Injection Sites - WCU
      • Muscles of the Body - Review
    • The Nervous System
      • Introduction to the Nervous System
      • Nervous Tissue
      • The Brain - Anat
      • The Ear - Sensory Organs
      • The Eye - Sensory Organs
    • THE REPRODUCTIVE SYSTEM
    • The Renal System
    • The Respiratory System
    • THE CIRCULATORY SYSTEM PORTAL
      • Intro to the Circulatory System
      • THE HEART
      • HEART DISSECTION PHOTO GALLERY
      • THE VESSELS OF BLOOD CIRCULATION
    • Digestive System
    • Animal Dissection (Virtual)
    • dissection of the fetal pig
  • Physiology
    • Homeostasis - Physio
    • Chemical Reactions - Physio
    • Chemistry of Life - Inorganic - Physio
    • The Chemistry of Cells - ORGANIC - Physio
    • Chemical Bonds - Physio
    • Metabolism - Physio
    • Portal to the Skeletal system
    • Endocrine and Homeostasis physio
    • Muscle Physiology
    • Blood
    • Cardiovascular System
    • Lymphatic System
    • Respiratory System Physiology
    • Renal System
    • Digestive System
    • Reproductive System
  • CMC Physiology Lab
    • Lab 1 - Surface Area to Volume Ratios
    • Lab 2 - Osmosis
    • Lab 4 - Heart Rate and Barometers
    • Lab 5 - Virtual Neuron Lab
    • Case Study One
  • Anat & Physio
    • The Muscular System Portal
    • The Integumentary System a&p
      • The Epidermis
      • The Dermis
      • The Epidermis rio
      • Connective Tissue
  • Biology of Human Pregnancy
    • Course Calendar - BIO 3070
    • Bio of Pregnancy - SYLLABUS
    • Course Information
    • Evolution of Human Pregnancy
    • History of Human Pregnancy
    • Myths of Pregnancy and Fertility
    • Female Reproductive System
    • The Menstrual Cycle
    • The Male Reproductive System and Male Contraception
    • Fertility and Conception
    • In-Vitro Fertilization
    • Infertility
    • Genetics of Reproduction
    • Prenatal and Maternity Care
    • The Pregnant Body
    • fetal development
    • Development of the Nervous System
    • Stages of Labor
    • Postpartum Issues
    • Twins
  • Chemistry
    • pH Lab
    • The Chemistry of Cells - ORGANIC
      • VOLCANO LAB
    • Volcano Project
  • College/Life Skills
    • Online Professionalism
    • Advising Resources
    • INTERVIEW SKILLS AND RESUME WRITING
    • DIVERSITY
    • CAMPUS EVENTS
      • Predation
    • Time Management
  • Environmental Science
    • MIDTERM 2 STUDY GUIDE
    • Exam 2 Study Guide
    • ENVS 105 Home Page
      • Midterm 3 Study Guide Population Ecology
      • Ecology II - Communities and Ecosystems
      • Module 1 Assignments
      • Module 2 Assignments
    • Inrtoduction to ENV SCI
    • Historical Perspective of ​Environmental Science
    • Biomes
    • FOOD CHAIN and FOOD WEB
    • Biogeochemical Recycling
    • Evolution - Our Beginning
    • Genetic Inheritance
    • Evolution: How Populations Change over Time
    • Symbiosis
    • Population Ecology
    • Competition in Nature
    • Herbivory
    • Niches
    • Fossil Fuels
  • Environmental Biology Laboratory
    • SOILS AND GROUNDWATER
    • Ecological Roles of Living Organisms
      • The Basics
      • Bacteria - Ecological Roles
      • Protists - Ecological Roles
      • Fungus - Ecological Roles
      • Plantae and Animalia - Ecological Roles
    • Virtual FIELD TRIP TO THE RIO HONDO COLLEGE ​WILDLIFE SANCTUARY - Adaptations to Dry Climates
    • Microscopic Plant Adaptations
    • Natural Selection
    • GROWTH CURVES
    • SOILS AND GROUNDWATER
    • LC50 and LD50
    • How to Make a Solar Water Heater
    • WATER QUALITY ANALYSIS
  • General Biology
    • Characteristics of Life
    • Chemistry of Life - Inorganic
    • The Chemistry of Cells - ORGANIC
    • Introduction to The Cell
    • Photosynthesis and cellular Respiration
    • Cell Membranes and Osmosis
    • The Cell Cycle
    • REGULATION of The Cell Cycle
    • Mitosis
    • Meiosis
    • The Structure of DNA
    • Evolution
  • General Biology Laboratory
    • GENERAL BIOLOGY 101 LABORATORY HOME PAGE
      • Enzymes
      • OSMOSIS LAB
      • Lab 1 - Bacteria, Protista and Fungi
      • Lab 2 - Plantae and Animalia
      • Photosynthesis
      • Lab 5 - Introduction to Cells
      • Lab 6 - The Chemistry of Cells
      • Lab 7 - Membrane Transport
      • Lab 8 - Enzymes
      • Lab 9 - Photosynthesis
      • Lab 10 Fermentation, Aerobic Cellular Respiration and Associated Major Organ Systems
    • GENERAL BIO 1110L Labs
      • lab 2 - CELLS - BIO 111L
      • lab 3 - DIFFUSION and OSMOSIS - BIO 111L
      • lab 4 - The Circulatory System - BIO 111L
      • lab 6 - Photosynthesis and Cellular Respiration
      • lab 7 - Reproduction - BIO 111L
      • DNA, GENES AND GENETIC INHERITANCE
      • lab 9 - GENE EXPRESSION AND PROTEIN SYNTHESIS
      • lab 10 - ADAPTATIONS - BIO 111L
      • lab 11 - ECOSYSTEMS AND BIODIVERSITY
  • Human Biology
    • A History of Human Biology
    • Levels of Organization
    • The Chemistry of Cells - ORGANIC
    • Cells
    • Cartilage SAC
    • BONES AND SKELETAL TISSUES
  • Human Biology Lab
    • Testing for Sugar, Starch and Proteins
    • Osmosis, Diffusion and Filtration
    • buffers
    • OSMOSIS LAB
    • Anatomical Planes
    • Body Cavities and Membranes
    • Anatomical Positions
    • The Appendicular Skeleton
    • The SKULL
    • the Thoracic Cage
    • the vertebral column
  • Human Sexuality
    • Course Information
    • Course Calendar
    • Lesson 1 - Introduction to Human Sexuality
    • Lesson 2 - Genetic Inheritance of Human Sexuality
    • Lesson 3 - The Male Reproductive Tract
    • Lesson 4 - The Female Reproductive Tract
    • Lesson 5 - The Menstrual Cycle
    • Midterm Exam Study Guide
    • Lesson 6 - Fetal Development and Sexual Differentiation
    • Lesson 7 - Disorders of Sexual Development
    • Lesson 8 - Gender Identity and Sexual Attraction
    • Lesson 9 - Fetishism
    • Lesson 10 - Sexuality Throughout the World
    • ​Lesson 11 - Sexuality Through the Ages
    • Lesson 12 - Sexual Harassment, Coercion and Violence
    • Final Exam Study Guide
  • Microbiology PORTAL
    • Microbiology - CPP
      • ​Intro to Microorganisms
      • Diseases
      • EPIDEMIOLOGY
      • HOST DEFENSES
      • PATHOGENICITY
      • History of Microbiology
      • Levels of Organization cpp
      • Bacteria versus Archaea
      • Intro. to Bacteria
      • Viruses and Prions
      • Microbial Genetics
      • Microbial Nutrition and Growth
        • Nutritional Categories
        • Microbial Metabolism
        • CONTROL OF BACTERIA GROWTH AND ANTIBIOTICS
      • Eukaryotic Organisms
      • Archaeal Diversity
      • Prokaryotic and Eukaryotic Cells
      • Bacteria vs Archaeal Structures
      • Taxonomic Classifications
      • Archaea, Bacteria and Eukaryotic Cells
      • MIC- CPP Course Calendar
    • Cell Theory
    • Chemistry of Life
      • Chemical Bonds
      • Chemical Reactions
    • Biofilms
    • Definition of Terms
  • Microbiology Laboratory
    • Cell Culture and Inoculations
    • aseptic technique
    • WET MOUNT
    • Streak Plate
    • Mannitol salt agar (MSA) Test
    • Eosin Methylene Blue (EMB)
    • Blood Agar
    • Dilution Series and Calculations
    • Phage Plaque Assay
    • MICROBIOLOGY UNKNOWN LAB
    • Microbiology Lab -study guide exam one
    • Ex 2 - Microorganisms
    • EX 3 - aseptic technique
    • Ex 4 - Smear Prep
    • Ex 5 - Simple Stains
    • Ex 6 - Negative Staining
    • Ex 8 - Gram Stain
    • Ex 9 - Acid-Fast Stain
    • Ex 10 - Endospore Stain
    • Ex 11 - Motility Test
    • ex 12 -​ Pure culture technique
    • ex 13 - UV Radiation
    • Ex 14 - Enumeration of Bacteria : Standard Plate Count
    • ex - 15 Effects of Temperature on Growth
    • ex 16 - Hand-washing
    • ex 17 - pH and microbial growth
    • ex 18 - Evaluation of Antiseptics
    • ex 19 - Antibiotic Sensitivity : Kirby-Bauer Method
  • HISTOTECHNOLOGY
  • The Brain
  • The Brain
  • The Structure of DNA
  • Contact
  • FUN ZONE
    • GAMES
    • Video Vault
    • Population Ecology - ACTIVITY
    • The Carbon Cycle - ACTIVITY
    • Evolution - ACTIVITY
    • The Cell Game
    • SYMBIOSIS ACTIVITY
    • THE LORAX ACTIVITY
    • Brittney the Kidney
    • From Soup to Poop
    • MITOSIS - THE NURSERY RHYME
    • Verne the Sperm and friends
      • Verne the Sperm pg1
        • Verne the Sperm pg2
        • Verne the Sperm pg3
        • Verne the Sperm pg4
        • Verne the Sperm pg5
  • Lab 6 - The Chemistry of Cells
  • A History of Anatomy
  • List of Pages
    • Microscopes
  • Cell Membranes and Osmosis
  • Chemistry of Life
  • Muscle Movements
  • The Muscles of the Head, Trunk and Shoulders
  • The Muscles of the Limbs
  • Nervous Tissue
  • The Brain - Anat and Physiology
  • Instructions for Taking BIO 3070
  • MTH 121 Algebra A - Course Schedule and Info
  • Laboratory Calendar CMC Spring 2019
  • Genetics Lab
  • Chemistry and Conversions Lab
  • Digestion and Enzymes Lab
  • Endocrine and Homeostasis Lab
  • Muscles and Reflexes Lab
  • Sensory Lab
  • Immunohistochemistry
  • Blood Lab
  • Heart Rate, Blood Pressure, Electrocardiogram Lab
  • Respiratory Lab
  • Lab 11 Renal Lab
  • Blood Typing Game
  • Body Systems Interactive
  • Ch 9 - The Central Nervous System
  • Ch 10 - Sensory Systems
  • Neuron Virtual Laboratory
  • Virtual Eye Lab
  • Virtual pH Lab
  • Chemical Bonds Virtual Lab
  • Beer's Law Virtual Lab
  • Build-an-Atom Virtual Lab
  • Diffusion Virtual Lab
  • Ohm's Law Virtual Lab
  • New Page
  • Ch 8 - Nervous System

MUSCLE TISSUE

The Muscle Cell / Myocyte / Muscle Fiber

    A myocyte (also known as a muscle cell or a muscle fiber) is the type of cell found in muscle tissue. Myocytes are long, tubular cells that develop from myoblasts to form muscles in a process known as myogenesis.

    There are various specialized forms of myocytes: cardiac, skeletal, and smooth 
muscle cells
, with various properties.

The Skeletal Muscle Fiber

Picture
    Skeletal muscle fibers are extremely long, cylindrical cells. A single muscle fiber can be up to a foot long in some muscles. This unique property is made possible, because the muscle fiber itself is actually formed from the fusion of literally hundreds of embryonic cells that get fused together during development.

 SKELETAL MUSCLE FIBERS ARE MULTI-NUCLEATED

    Since skeletal muscle cells (muscle fibers) are made from the fusion of hundreds of embryonic cells, they contain many nuclei. In other words, they are multinucleated. You will notice that the nuclei lie on the outer portion of the muscle fiber when examining skeletal tissue under the microscope.

 SKELETAL MUSCLE FIBERS ARE STRIATED
​

   Skeletal muscle fibers have 'stripes' called striations. These striations are due to the presence of the myofibrils that make up the major portion of the muscle fiber.
    
    The muscle fiber is a long cylinder that contains bundles of smaller, long cylinders, called myofibrils. Myofibrils contain the myofilaments necessary for muscle contraction. A myofibril is composed of repeating segments called sarcomeres. The sarcomere is the basic unit of contraction in skeletal muscle. The striations occur due to the presence of the sarcomeres of the myofibrils.

   lains the pattern of
Picture
The Sliding Filament Model of Muscle Contraction 
The striations of skeletal muscle fibers are due to the presence of repeated units called sarcomeres. The sarcomere is the functional unit of muscle contraction. The sarcomere contains filaments which slide past eachnother, contracting (shortening) the cell upon command from the nervous system. 

Picture
IMAGE Courtesy of : Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014".
​WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436.
- Own work

Muscle Tissue

Picture
There are 3 Types of Muscle Tissue
Picture
Picture
Slide of Cardiac Muscle - Courtesy of OpenStax College - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, Jun 19, 2013., CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=30015032

Picture
Slide of Skeletal Muscle - Courtesy of OpenStax College - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, Jun 19, 2013., CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=30015032

Picture
Slide of Smooth Muscle - Courtesy of OpenStax College - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, Jun 19, 2013., CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=30015032

Cardiac Muscle

via GIPHY

Picture
​Cardiac muscle tissue is made up of cells that are striated and have only one nucleus per cell. These cells create branched structures within the tissue that allows connections to be made between cells via gap junctions.  Cardiac muscle contraction is under the control of the autonomic nervous system and, therefore, is involuntary. Image how your life would be if you had to remember to tell your heart to beat every second or so!

Picture
Picture

via GIPHY

    Cardiac muscle cells are called cardiomyocytes. Cardiomyocytes are connected via gap junctions which allow electrochemical signals from one cell to travel directly into the adjacent cells. The gap junction acts like a tunnel connecting the cytoplasm of the two cells together.  In cardiac muscle, these junctions  act to coordinate the spread of the action potential (generated by the pacemaker cells) to the rest pf the cardiomyocytes of the heart, thereby creating a coordinated, rhythmic heart beat ​

Skeletal Muscle

Picture
   Skeletal muscle tissue is the only type of muscle tissue that is under conscious (or voluntary) control via your somatic nervous system. Your brain sends signals down your spinal cord that connects with peripheral nerves to command the muscles to contract or to relax. Skeletal muscle is the type of muscle that most people envision when the word 'muscle' is used. These are the noticeable muscles that can give shape to our skin and act to move the various parts of your body at will.

   Skeletal muscle tissue makes up the muscles you have that are attached to the skeleton. They are made up of long striated tubular cells and multiple nuclei. The fibers are tightly packed together and are arranged in parallel and have several nuclei per muscle cell. 

    Most skeletal muscles are attached to bones by tendons. The single muscle cell or muscle fiber is known as a myofilbril. The myofibrils line up in repeated patterns called sarcomeres, which gives skeletal muscle its striated appearance, 

​General structure of a muscle cell and neuromuscular junction:​
Picture
  1. Axon
  2. Neuromuscular junction
  3. Muscle fiber (Myocyte)
  4. Myofibril
IMAGE Courtesy of CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=282900

via GIPHY

Picture
Picture
     Striated muscle tissue consists of myocytes that appear to be striped  (transversely) with alternating dark and light bands of color. These striations are visible when the muscle tissue is viewed histologically (on a slide). 
   
     Each elongated, cylindrical unit is a skeletal muscle cell, called a muscle fiber or myocyte.
​
     Skeletal muscle is consciously (voluntarily) controlled by the (somatic) nervous system. The point at which the motor neuron synapses with (comes into close proximity to) the muscle fiber is called the neuromuscular junction.
 

Smooth Muscle

Picture
Picture
Most smooth muscle has a "single-unit" function, where either the whole muscle contracts or the whole muscle relaxes. Single unit smooth muscle is found in the linings  of blood vessels (except large elastic arteries), the urinary tract, and the digestive tract.

Smooth muscle can also function in a "multi-unit" fashion (see animation of the trachea), when there is a coordination of contraction and relaxation in the muscle tissue that acts to move substances from one area to another. Multi-unit smooth muscle is found in the trachea, the large elastic arteries, and the iris of the eye. 
​
Smooth muscle is able to stretch and contract repeatedly and upon relaxation will return to its resting shape. This ability is especially important for the digestive tract and the urinary bladder. 
Picture

SUMMARY

Picture
  It is Important to be Able to Distinguish Between the Origin and the Insertion Point of a Muscle.     This information will tell us the function of the muscle. Remember that structure equals function!
    Skeletal muscles attach to at least 2 bones, and span one movable joint. The way that these muscles attach to the bones of your body, is through TENDONS. Muscles always PULL they never PUSH.  When a muscle contracts, it pulls the bones it connects to closer to one another, by decreasing the angle of the movable joint that is spans. 
    Typically, when we contract a muscle, one of the bones the muscle attaches to moves a lot, while the other bone(s) the muscle attaches to remains relatively "fixed" in space.
  • The origin is the attachment site that remains relatively "fixed in space" during muscle contraction
  • The insertion is the attachment site that moves quite a bit during muscle contraction. 
The insertion is usually distal, or further away, while the origin is proximal, or closer to the body, relative to the insertion. For example, one could say the wrist is distal to the elbow. Conversely, you can say the elbow is proximal to the wrist.
Muscular contraction produces an action, or a movement of the appendage. We will use examples to describe how the origin and insertion affect the action of a skeletal muscle.
Action NomenclatureMuscle contraction results in different types of movement. The particular movement is a direct result of the muscle attachment. Most of these movements are realized when we run. Each of these actions can be described in one of two ways.
The first describes action in terms of the bone to which the muscle is attached or the appendage that is moved. For example, the biceps brachii performs flexion of the forearmas the forearm is moved. The second way to describe a muscle's action is based on the joint, or the articulation. For example, that same muscle, the biceps brachii, performs flexion at the elbow, in which the elbow is the joint.


One way to describe muscle action is by the bone that is involved.

Muscle Functional RolesThe human body has over 500 muscles responsible for all types of movement. Each of these muscles has a name; for example, again, the biceps brachii and now the triceps brachii, responsible for both forearm flexion and forearm extension, respectively. When movement of a body part occurs, muscles work in groups rather than individually. Working together enhances a particular movement. During that particular movement, individual muscles will play different roles depending on their origin and insertion. These different roles can be described as agonists (or prime movers), antagonists, or synergists.
Let's take a look at forearm flexion and identify the roles of the different muscles involved. The biceps brachii is the agonist in forearm flexion. An agonist, or as I said before, a prime mover, is the muscle that is primarily responsible for the movement described: forearm flexion. The action makes sense when you consider the muscle's points of attachment.
The biceps brachii originates on the front of the scapula of the shoulder and inserts on the front of the radius in the forearm. Due to these attachments, contraction and muscle shortening of the biceps flexes the forearm.
The triceps is the antagonist, and its action opposes that of the agonist. The triceps brachii originates on the back of the scapula and humerus, and inserts on the back of the ulna in the forearm.
Due to these attachments, the triceps is stretched during forearm flexing. Stretching the muscle causes the triceps muscle to contract and, thus, slow flexion. It's important to note that the antagonist contraction is minor in comparison to the agonist contraction, and therefore it doesn't prevent the action of the agonist. Rather, antagonist contraction controls the movement by slowing it down and making it smooth.


The antagonist action helps control the muscle movement.

Agonists and antagonists are always functional opposites. Additionally, these muscles switch roles with opposite movements. Let's take a look at an example. The triceps brachii becomes the agonist - while the biceps brachii is the antagonist - when we extend our forearm.
A synergist is a muscle that enhances the action of the agonist. For example, the brachialis is a synergist of the biceps brachii during forearm flexion. The brachialis originates on the humerus, and it inserts on the front of the ulna. As these attachments of the brachialis are similar in nature to those of the biceps brachii, so is its action. Oftentimes, synergist muscles are needed to get a particular action started.
Lesson SummaryIn summary, skeletal muscles are attached to bones on each end by tendons. The origin is the fixed attachment, while the insertion moves with contraction. The action, or particular movement of a muscle, can be described relative to the joint or the body part moved.
Groups of muscles are involved in most movements and names are used to describe the role of each muscle involved. Agonists, or prime movers, are responsible for the bulk of the action. Antagonist contractions are opposite that of the agonist and serve to control the action. Finally, synergist muscles enhance the action of the agonist.


Curious About ScientistCindy?

Location

Upland, CA
​USA

WebSite

WWW.ScientistCindy.Com
WWW.PhunnyPhysiology.Com
WWW.BiologicalSciencesUniversity.Com

Email

ABOUT
Send email inquiries to ScientistCindy@gmail.com
Photo used under Creative Commons from roonb
  • Home
  • Anatomy
    • Anatomy - CMC Home Page
      • Practical Exam #2 REDEMPTION EXAM!
      • Practical Exam #3
      • Practical Exam #4
      • Practical Exam #5
      • Practical Exam #6
      • Lab Quiz 4
      • Lab Quiz 5
    • Anatomy Basics
      • Intro to Anatomy
      • Medical Terminology
      • A History of Anatomy
      • Levels of Organization
      • Anatomical Positions
      • Anatomical Planes
      • Anatomical Regions
      • Body Cavities and Membranes
    • Cells Portal
      • Anatomy of the Cell SAC
      • Membrane Transport
      • The Cell Cycle
      • REGULATION of The Cell Cycle
      • BLOOD CELLS
      • mitosis
    • Tissues Portal SAC
      • The Integumentary System
      • Epithelial Tissues
      • Connective Tissue
      • Muscle Tissue
      • BONES AND SKELETAL TISSUES
      • Cartilage SAC
    • Organ Systems
    • Portal to the Skeletal system
      • The SKULL ANATOMY
      • the Thoracic Cage
      • the vertebral column
      • The Appendicular Skeleton
      • BONES AND SKELETAL TISSUES
      • joints
    • The Muscular System Portal
      • Muscle Tissue
      • Muscles - Intramuscular Injection Sites - WCU
      • Muscles of the Body - Review
    • The Nervous System
      • Introduction to the Nervous System
      • Nervous Tissue
      • The Brain - Anat
      • The Ear - Sensory Organs
      • The Eye - Sensory Organs
    • THE REPRODUCTIVE SYSTEM
    • The Renal System
    • The Respiratory System
    • THE CIRCULATORY SYSTEM PORTAL
      • Intro to the Circulatory System
      • THE HEART
      • HEART DISSECTION PHOTO GALLERY
      • THE VESSELS OF BLOOD CIRCULATION
    • Digestive System
    • Animal Dissection (Virtual)
    • dissection of the fetal pig
  • Physiology
    • Homeostasis - Physio
    • Chemical Reactions - Physio
    • Chemistry of Life - Inorganic - Physio
    • The Chemistry of Cells - ORGANIC - Physio
    • Chemical Bonds - Physio
    • Metabolism - Physio
    • Portal to the Skeletal system
    • Endocrine and Homeostasis physio
    • Muscle Physiology
    • Blood
    • Cardiovascular System
    • Lymphatic System
    • Respiratory System Physiology
    • Renal System
    • Digestive System
    • Reproductive System
  • CMC Physiology Lab
    • Lab 1 - Surface Area to Volume Ratios
    • Lab 2 - Osmosis
    • Lab 4 - Heart Rate and Barometers
    • Lab 5 - Virtual Neuron Lab
    • Case Study One
  • Anat & Physio
    • The Muscular System Portal
    • The Integumentary System a&p
      • The Epidermis
      • The Dermis
      • The Epidermis rio
      • Connective Tissue
  • Biology of Human Pregnancy
    • Course Calendar - BIO 3070
    • Bio of Pregnancy - SYLLABUS
    • Course Information
    • Evolution of Human Pregnancy
    • History of Human Pregnancy
    • Myths of Pregnancy and Fertility
    • Female Reproductive System
    • The Menstrual Cycle
    • The Male Reproductive System and Male Contraception
    • Fertility and Conception
    • In-Vitro Fertilization
    • Infertility
    • Genetics of Reproduction
    • Prenatal and Maternity Care
    • The Pregnant Body
    • fetal development
    • Development of the Nervous System
    • Stages of Labor
    • Postpartum Issues
    • Twins
  • Chemistry
    • pH Lab
    • The Chemistry of Cells - ORGANIC
      • VOLCANO LAB
    • Volcano Project
  • College/Life Skills
    • Online Professionalism
    • Advising Resources
    • INTERVIEW SKILLS AND RESUME WRITING
    • DIVERSITY
    • CAMPUS EVENTS
      • Predation
    • Time Management
  • Environmental Science
    • MIDTERM 2 STUDY GUIDE
    • Exam 2 Study Guide
    • ENVS 105 Home Page
      • Midterm 3 Study Guide Population Ecology
      • Ecology II - Communities and Ecosystems
      • Module 1 Assignments
      • Module 2 Assignments
    • Inrtoduction to ENV SCI
    • Historical Perspective of ​Environmental Science
    • Biomes
    • FOOD CHAIN and FOOD WEB
    • Biogeochemical Recycling
    • Evolution - Our Beginning
    • Genetic Inheritance
    • Evolution: How Populations Change over Time
    • Symbiosis
    • Population Ecology
    • Competition in Nature
    • Herbivory
    • Niches
    • Fossil Fuels
  • Environmental Biology Laboratory
    • SOILS AND GROUNDWATER
    • Ecological Roles of Living Organisms
      • The Basics
      • Bacteria - Ecological Roles
      • Protists - Ecological Roles
      • Fungus - Ecological Roles
      • Plantae and Animalia - Ecological Roles
    • Virtual FIELD TRIP TO THE RIO HONDO COLLEGE ​WILDLIFE SANCTUARY - Adaptations to Dry Climates
    • Microscopic Plant Adaptations
    • Natural Selection
    • GROWTH CURVES
    • SOILS AND GROUNDWATER
    • LC50 and LD50
    • How to Make a Solar Water Heater
    • WATER QUALITY ANALYSIS
  • General Biology
    • Characteristics of Life
    • Chemistry of Life - Inorganic
    • The Chemistry of Cells - ORGANIC
    • Introduction to The Cell
    • Photosynthesis and cellular Respiration
    • Cell Membranes and Osmosis
    • The Cell Cycle
    • REGULATION of The Cell Cycle
    • Mitosis
    • Meiosis
    • The Structure of DNA
    • Evolution
  • General Biology Laboratory
    • GENERAL BIOLOGY 101 LABORATORY HOME PAGE
      • Enzymes
      • OSMOSIS LAB
      • Lab 1 - Bacteria, Protista and Fungi
      • Lab 2 - Plantae and Animalia
      • Photosynthesis
      • Lab 5 - Introduction to Cells
      • Lab 6 - The Chemistry of Cells
      • Lab 7 - Membrane Transport
      • Lab 8 - Enzymes
      • Lab 9 - Photosynthesis
      • Lab 10 Fermentation, Aerobic Cellular Respiration and Associated Major Organ Systems
    • GENERAL BIO 1110L Labs
      • lab 2 - CELLS - BIO 111L
      • lab 3 - DIFFUSION and OSMOSIS - BIO 111L
      • lab 4 - The Circulatory System - BIO 111L
      • lab 6 - Photosynthesis and Cellular Respiration
      • lab 7 - Reproduction - BIO 111L
      • DNA, GENES AND GENETIC INHERITANCE
      • lab 9 - GENE EXPRESSION AND PROTEIN SYNTHESIS
      • lab 10 - ADAPTATIONS - BIO 111L
      • lab 11 - ECOSYSTEMS AND BIODIVERSITY
  • Human Biology
    • A History of Human Biology
    • Levels of Organization
    • The Chemistry of Cells - ORGANIC
    • Cells
    • Cartilage SAC
    • BONES AND SKELETAL TISSUES
  • Human Biology Lab
    • Testing for Sugar, Starch and Proteins
    • Osmosis, Diffusion and Filtration
    • buffers
    • OSMOSIS LAB
    • Anatomical Planes
    • Body Cavities and Membranes
    • Anatomical Positions
    • The Appendicular Skeleton
    • The SKULL
    • the Thoracic Cage
    • the vertebral column
  • Human Sexuality
    • Course Information
    • Course Calendar
    • Lesson 1 - Introduction to Human Sexuality
    • Lesson 2 - Genetic Inheritance of Human Sexuality
    • Lesson 3 - The Male Reproductive Tract
    • Lesson 4 - The Female Reproductive Tract
    • Lesson 5 - The Menstrual Cycle
    • Midterm Exam Study Guide
    • Lesson 6 - Fetal Development and Sexual Differentiation
    • Lesson 7 - Disorders of Sexual Development
    • Lesson 8 - Gender Identity and Sexual Attraction
    • Lesson 9 - Fetishism
    • Lesson 10 - Sexuality Throughout the World
    • ​Lesson 11 - Sexuality Through the Ages
    • Lesson 12 - Sexual Harassment, Coercion and Violence
    • Final Exam Study Guide
  • Microbiology PORTAL
    • Microbiology - CPP
      • ​Intro to Microorganisms
      • Diseases
      • EPIDEMIOLOGY
      • HOST DEFENSES
      • PATHOGENICITY
      • History of Microbiology
      • Levels of Organization cpp
      • Bacteria versus Archaea
      • Intro. to Bacteria
      • Viruses and Prions
      • Microbial Genetics
      • Microbial Nutrition and Growth
        • Nutritional Categories
        • Microbial Metabolism
        • CONTROL OF BACTERIA GROWTH AND ANTIBIOTICS
      • Eukaryotic Organisms
      • Archaeal Diversity
      • Prokaryotic and Eukaryotic Cells
      • Bacteria vs Archaeal Structures
      • Taxonomic Classifications
      • Archaea, Bacteria and Eukaryotic Cells
      • MIC- CPP Course Calendar
    • Cell Theory
    • Chemistry of Life
      • Chemical Bonds
      • Chemical Reactions
    • Biofilms
    • Definition of Terms
  • Microbiology Laboratory
    • Cell Culture and Inoculations
    • aseptic technique
    • WET MOUNT
    • Streak Plate
    • Mannitol salt agar (MSA) Test
    • Eosin Methylene Blue (EMB)
    • Blood Agar
    • Dilution Series and Calculations
    • Phage Plaque Assay
    • MICROBIOLOGY UNKNOWN LAB
    • Microbiology Lab -study guide exam one
    • Ex 2 - Microorganisms
    • EX 3 - aseptic technique
    • Ex 4 - Smear Prep
    • Ex 5 - Simple Stains
    • Ex 6 - Negative Staining
    • Ex 8 - Gram Stain
    • Ex 9 - Acid-Fast Stain
    • Ex 10 - Endospore Stain
    • Ex 11 - Motility Test
    • ex 12 -​ Pure culture technique
    • ex 13 - UV Radiation
    • Ex 14 - Enumeration of Bacteria : Standard Plate Count
    • ex - 15 Effects of Temperature on Growth
    • ex 16 - Hand-washing
    • ex 17 - pH and microbial growth
    • ex 18 - Evaluation of Antiseptics
    • ex 19 - Antibiotic Sensitivity : Kirby-Bauer Method
  • HISTOTECHNOLOGY
  • The Brain
  • The Brain
  • The Structure of DNA
  • Contact
  • FUN ZONE
    • GAMES
    • Video Vault
    • Population Ecology - ACTIVITY
    • The Carbon Cycle - ACTIVITY
    • Evolution - ACTIVITY
    • The Cell Game
    • SYMBIOSIS ACTIVITY
    • THE LORAX ACTIVITY
    • Brittney the Kidney
    • From Soup to Poop
    • MITOSIS - THE NURSERY RHYME
    • Verne the Sperm and friends
      • Verne the Sperm pg1
        • Verne the Sperm pg2
        • Verne the Sperm pg3
        • Verne the Sperm pg4
        • Verne the Sperm pg5
  • Lab 6 - The Chemistry of Cells
  • A History of Anatomy
  • List of Pages
    • Microscopes
  • Cell Membranes and Osmosis
  • Chemistry of Life
  • Muscle Movements
  • The Muscles of the Head, Trunk and Shoulders
  • The Muscles of the Limbs
  • Nervous Tissue
  • The Brain - Anat and Physiology
  • Instructions for Taking BIO 3070
  • MTH 121 Algebra A - Course Schedule and Info
  • Laboratory Calendar CMC Spring 2019
  • Genetics Lab
  • Chemistry and Conversions Lab
  • Digestion and Enzymes Lab
  • Endocrine and Homeostasis Lab
  • Muscles and Reflexes Lab
  • Sensory Lab
  • Immunohistochemistry
  • Blood Lab
  • Heart Rate, Blood Pressure, Electrocardiogram Lab
  • Respiratory Lab
  • Lab 11 Renal Lab
  • Blood Typing Game
  • Body Systems Interactive
  • Ch 9 - The Central Nervous System
  • Ch 10 - Sensory Systems
  • Neuron Virtual Laboratory
  • Virtual Eye Lab
  • Virtual pH Lab
  • Chemical Bonds Virtual Lab
  • Beer's Law Virtual Lab
  • Build-an-Atom Virtual Lab
  • Diffusion Virtual Lab
  • Ohm's Law Virtual Lab
  • New Page
  • Ch 8 - Nervous System