SCIENTIST CINDY
  • Home
  • Anatomy
    • Anatomy - CMC Home Page
      • Practical Exam #2 REDEMPTION EXAM!
      • Practical Exam #3
      • Practical Exam #4
      • Practical Exam #5
      • Practical Exam #6
      • Lab Quiz 4
      • Lab Quiz 5
    • Anatomy Basics
      • Intro to Anatomy
      • Medical Terminology
      • A History of Anatomy
      • Levels of Organization
      • Anatomical Positions
      • Anatomical Planes
      • Anatomical Regions
      • Body Cavities and Membranes
    • Cells Portal
      • Anatomy of the Cell SAC
      • Membrane Transport
      • The Cell Cycle
      • REGULATION of The Cell Cycle
      • BLOOD CELLS
      • mitosis
    • Tissues Portal SAC
      • The Integumentary System
      • Epithelial Tissues
      • Connective Tissue
      • Muscle Tissue
      • BONES AND SKELETAL TISSUES
      • Cartilage SAC
    • Organ Systems
    • Portal to the Skeletal system
      • The SKULL ANATOMY
      • the Thoracic Cage
      • the vertebral column
      • The Appendicular Skeleton
      • BONES AND SKELETAL TISSUES
      • joints
    • The Muscular System Portal
      • Muscle Tissue
      • Muscles - Intramuscular Injection Sites - WCU
      • Muscles of the Body - Review
    • The Nervous System
      • Introduction to the Nervous System
      • Nervous Tissue
      • The Brain - Anat
      • The Ear - Sensory Organs
      • The Eye - Sensory Organs
    • THE REPRODUCTIVE SYSTEM
    • The Renal System
    • The Respiratory System
    • THE CIRCULATORY SYSTEM PORTAL
      • Intro to the Circulatory System
      • THE HEART
      • HEART DISSECTION PHOTO GALLERY
      • THE VESSELS OF BLOOD CIRCULATION
    • Digestive System
    • Animal Dissection (Virtual)
    • dissection of the fetal pig
  • Physiology
    • Homeostasis - Physio
    • Chemical Reactions - Physio
    • Chemistry of Life - Inorganic - Physio
    • The Chemistry of Cells - ORGANIC - Physio
    • Chemical Bonds - Physio
    • Metabolism - Physio
    • Portal to the Skeletal system
    • Endocrine and Homeostasis physio
    • Muscle Physiology
    • Blood
    • Cardiovascular System
    • Lymphatic System
    • Respiratory System Physiology
    • Renal System
    • Digestive System
    • Reproductive System
  • CMC Physiology Lab
    • Lab 1 - Surface Area to Volume Ratios
    • Lab 2 - Osmosis
    • Lab 4 - Heart Rate and Barometers
    • Lab 5 - Virtual Neuron Lab
    • Case Study One
  • Anat & Physio
    • The Muscular System Portal
    • The Integumentary System a&p
      • The Epidermis
      • The Dermis
      • The Epidermis rio
      • Connective Tissue
  • Biology of Human Pregnancy
    • Course Calendar - BIO 3070
    • Bio of Pregnancy - SYLLABUS
    • Course Information
    • Evolution of Human Pregnancy
    • History of Human Pregnancy
    • Myths of Pregnancy and Fertility
    • Female Reproductive System
    • The Menstrual Cycle
    • The Male Reproductive System and Male Contraception
    • Fertility and Conception
    • In-Vitro Fertilization
    • Infertility
    • Genetics of Reproduction
    • Prenatal and Maternity Care
    • The Pregnant Body
    • fetal development
    • Development of the Nervous System
    • Stages of Labor
    • Postpartum Issues
    • Twins
  • Chemistry
    • pH Lab
    • The Chemistry of Cells - ORGANIC
      • VOLCANO LAB
    • Volcano Project
  • College/Life Skills
    • Online Professionalism
    • Advising Resources
    • INTERVIEW SKILLS AND RESUME WRITING
    • DIVERSITY
    • CAMPUS EVENTS
      • Predation
    • Time Management
  • Environmental Science
    • MIDTERM 2 STUDY GUIDE
    • Exam 2 Study Guide
    • ENVS 105 Home Page
      • Midterm 3 Study Guide Population Ecology
      • Ecology II - Communities and Ecosystems
      • Module 1 Assignments
      • Module 2 Assignments
    • Inrtoduction to ENV SCI
    • Historical Perspective of ​Environmental Science
    • Biomes
    • FOOD CHAIN and FOOD WEB
    • Biogeochemical Recycling
    • Evolution - Our Beginning
    • Genetic Inheritance
    • Evolution: How Populations Change over Time
    • Symbiosis
    • Population Ecology
    • Competition in Nature
    • Herbivory
    • Niches
    • Fossil Fuels
  • Environmental Biology Laboratory
    • SOILS AND GROUNDWATER
    • Ecological Roles of Living Organisms
      • The Basics
      • Bacteria - Ecological Roles
      • Protists - Ecological Roles
      • Fungus - Ecological Roles
      • Plantae and Animalia - Ecological Roles
    • Virtual FIELD TRIP TO THE RIO HONDO COLLEGE ​WILDLIFE SANCTUARY - Adaptations to Dry Climates
    • Microscopic Plant Adaptations
    • Natural Selection
    • GROWTH CURVES
    • SOILS AND GROUNDWATER
    • LC50 and LD50
    • How to Make a Solar Water Heater
    • WATER QUALITY ANALYSIS
  • General Biology
    • Characteristics of Life
    • Chemistry of Life - Inorganic
    • The Chemistry of Cells - ORGANIC
    • Introduction to The Cell
    • Photosynthesis and cellular Respiration
    • Cell Membranes and Osmosis
    • The Cell Cycle
    • REGULATION of The Cell Cycle
    • Mitosis
    • Meiosis
    • The Structure of DNA
    • Evolution
  • General Biology Laboratory
    • GENERAL BIOLOGY 101 LABORATORY HOME PAGE
      • Enzymes
      • OSMOSIS LAB
      • Lab 1 - Bacteria, Protista and Fungi
      • Lab 2 - Plantae and Animalia
      • Photosynthesis
      • Lab 5 - Introduction to Cells
      • Lab 6 - The Chemistry of Cells
      • Lab 7 - Membrane Transport
      • Lab 8 - Enzymes
      • Lab 9 - Photosynthesis
      • Lab 10 Fermentation, Aerobic Cellular Respiration and Associated Major Organ Systems
    • GENERAL BIO 1110L Labs
      • lab 2 - CELLS - BIO 111L
      • lab 3 - DIFFUSION and OSMOSIS - BIO 111L
      • lab 4 - The Circulatory System - BIO 111L
      • lab 6 - Photosynthesis and Cellular Respiration
      • lab 7 - Reproduction - BIO 111L
      • DNA, GENES AND GENETIC INHERITANCE
      • lab 9 - GENE EXPRESSION AND PROTEIN SYNTHESIS
      • lab 10 - ADAPTATIONS - BIO 111L
      • lab 11 - ECOSYSTEMS AND BIODIVERSITY
  • Human Biology
    • A History of Human Biology
    • Levels of Organization
    • The Chemistry of Cells - ORGANIC
    • Cells
    • Cartilage SAC
    • BONES AND SKELETAL TISSUES
  • Human Biology Lab
    • Testing for Sugar, Starch and Proteins
    • Osmosis, Diffusion and Filtration
    • buffers
    • OSMOSIS LAB
    • Anatomical Planes
    • Body Cavities and Membranes
    • Anatomical Positions
    • The Appendicular Skeleton
    • The SKULL
    • the Thoracic Cage
    • the vertebral column
  • Human Sexuality
    • Course Information
    • Course Calendar
    • Lesson 1 - Introduction to Human Sexuality
    • Lesson 2 - Genetic Inheritance of Human Sexuality
    • Lesson 3 - The Male Reproductive Tract
    • Lesson 4 - The Female Reproductive Tract
    • Lesson 5 - The Menstrual Cycle
    • Midterm Exam Study Guide
    • Lesson 6 - Fetal Development and Sexual Differentiation
    • Lesson 7 - Disorders of Sexual Development
    • Lesson 8 - Gender Identity and Sexual Attraction
    • Lesson 9 - Fetishism
    • Lesson 10 - Sexuality Throughout the World
    • ​Lesson 11 - Sexuality Through the Ages
    • Lesson 12 - Sexual Harassment, Coercion and Violence
    • Final Exam Study Guide
  • Microbiology PORTAL
    • Microbiology - CPP
      • ​Intro to Microorganisms
      • Diseases
      • EPIDEMIOLOGY
      • HOST DEFENSES
      • PATHOGENICITY
      • History of Microbiology
      • Levels of Organization cpp
      • Bacteria versus Archaea
      • Intro. to Bacteria
      • Viruses and Prions
      • Microbial Genetics
      • Microbial Nutrition and Growth
        • Nutritional Categories
        • Microbial Metabolism
        • CONTROL OF BACTERIA GROWTH AND ANTIBIOTICS
      • Eukaryotic Organisms
      • Archaeal Diversity
      • Prokaryotic and Eukaryotic Cells
      • Bacteria vs Archaeal Structures
      • Taxonomic Classifications
      • Archaea, Bacteria and Eukaryotic Cells
      • MIC- CPP Course Calendar
    • Cell Theory
    • Chemistry of Life
      • Chemical Bonds
      • Chemical Reactions
    • Biofilms
    • Definition of Terms
  • Microbiology Laboratory
    • Cell Culture and Inoculations
    • aseptic technique
    • WET MOUNT
    • Streak Plate
    • Mannitol salt agar (MSA) Test
    • Eosin Methylene Blue (EMB)
    • Blood Agar
    • Dilution Series and Calculations
    • Phage Plaque Assay
    • MICROBIOLOGY UNKNOWN LAB
    • Microbiology Lab -study guide exam one
    • Ex 2 - Microorganisms
    • EX 3 - aseptic technique
    • Ex 4 - Smear Prep
    • Ex 5 - Simple Stains
    • Ex 6 - Negative Staining
    • Ex 8 - Gram Stain
    • Ex 9 - Acid-Fast Stain
    • Ex 10 - Endospore Stain
    • Ex 11 - Motility Test
    • ex 12 -​ Pure culture technique
    • ex 13 - UV Radiation
    • Ex 14 - Enumeration of Bacteria : Standard Plate Count
    • ex - 15 Effects of Temperature on Growth
    • ex 16 - Hand-washing
    • ex 17 - pH and microbial growth
    • ex 18 - Evaluation of Antiseptics
    • ex 19 - Antibiotic Sensitivity : Kirby-Bauer Method
  • HISTOTECHNOLOGY
  • The Brain
  • The Brain
  • The Structure of DNA
  • Contact
  • FUN ZONE
    • GAMES
    • Video Vault
    • Population Ecology - ACTIVITY
    • The Carbon Cycle - ACTIVITY
    • Evolution - ACTIVITY
    • The Cell Game
    • SYMBIOSIS ACTIVITY
    • THE LORAX ACTIVITY
    • Brittney the Kidney
    • From Soup to Poop
    • MITOSIS - THE NURSERY RHYME
    • Verne the Sperm and friends
      • Verne the Sperm pg1
        • Verne the Sperm pg2
        • Verne the Sperm pg3
        • Verne the Sperm pg4
        • Verne the Sperm pg5
  • Lab 6 - The Chemistry of Cells
  • A History of Anatomy
  • List of Pages
    • Microscopes
  • Cell Membranes and Osmosis
  • Chemistry of Life
  • Muscle Movements
  • The Muscles of the Head, Trunk and Shoulders
  • The Muscles of the Limbs
  • Nervous Tissue
  • The Brain - Anat and Physiology
  • Instructions for Taking BIO 3070
  • MTH 121 Algebra A - Course Schedule and Info
  • Laboratory Calendar CMC Spring 2019
  • Genetics Lab
  • Chemistry and Conversions Lab
  • Digestion and Enzymes Lab
  • Endocrine and Homeostasis Lab
  • Muscles and Reflexes Lab
  • Sensory Lab
  • Immunohistochemistry
  • Blood Lab
  • Heart Rate, Blood Pressure, Electrocardiogram Lab
  • Respiratory Lab
  • Lab 11 Renal Lab
  • Blood Typing Game
  • Body Systems Interactive
  • Ch 9 - The Central Nervous System
  • Ch 10 - Sensory Systems
  • Neuron Virtual Laboratory
  • Virtual Eye Lab
  • Virtual pH Lab
  • Chemical Bonds Virtual Lab
  • Beer's Law Virtual Lab
  • Build-an-Atom Virtual Lab
  • Diffusion Virtual Lab
  • Ohm's Law Virtual Lab
  • New Page
  • Ch 8 - Nervous System
  • Home
  • Anatomy
    • Anatomy - CMC Home Page
      • Practical Exam #2 REDEMPTION EXAM!
      • Practical Exam #3
      • Practical Exam #4
      • Practical Exam #5
      • Practical Exam #6
      • Lab Quiz 4
      • Lab Quiz 5
    • Anatomy Basics
      • Intro to Anatomy
      • Medical Terminology
      • A History of Anatomy
      • Levels of Organization
      • Anatomical Positions
      • Anatomical Planes
      • Anatomical Regions
      • Body Cavities and Membranes
    • Cells Portal
      • Anatomy of the Cell SAC
      • Membrane Transport
      • The Cell Cycle
      • REGULATION of The Cell Cycle
      • BLOOD CELLS
      • mitosis
    • Tissues Portal SAC
      • The Integumentary System
      • Epithelial Tissues
      • Connective Tissue
      • Muscle Tissue
      • BONES AND SKELETAL TISSUES
      • Cartilage SAC
    • Organ Systems
    • Portal to the Skeletal system
      • The SKULL ANATOMY
      • the Thoracic Cage
      • the vertebral column
      • The Appendicular Skeleton
      • BONES AND SKELETAL TISSUES
      • joints
    • The Muscular System Portal
      • Muscle Tissue
      • Muscles - Intramuscular Injection Sites - WCU
      • Muscles of the Body - Review
    • The Nervous System
      • Introduction to the Nervous System
      • Nervous Tissue
      • The Brain - Anat
      • The Ear - Sensory Organs
      • The Eye - Sensory Organs
    • THE REPRODUCTIVE SYSTEM
    • The Renal System
    • The Respiratory System
    • THE CIRCULATORY SYSTEM PORTAL
      • Intro to the Circulatory System
      • THE HEART
      • HEART DISSECTION PHOTO GALLERY
      • THE VESSELS OF BLOOD CIRCULATION
    • Digestive System
    • Animal Dissection (Virtual)
    • dissection of the fetal pig
  • Physiology
    • Homeostasis - Physio
    • Chemical Reactions - Physio
    • Chemistry of Life - Inorganic - Physio
    • The Chemistry of Cells - ORGANIC - Physio
    • Chemical Bonds - Physio
    • Metabolism - Physio
    • Portal to the Skeletal system
    • Endocrine and Homeostasis physio
    • Muscle Physiology
    • Blood
    • Cardiovascular System
    • Lymphatic System
    • Respiratory System Physiology
    • Renal System
    • Digestive System
    • Reproductive System
  • CMC Physiology Lab
    • Lab 1 - Surface Area to Volume Ratios
    • Lab 2 - Osmosis
    • Lab 4 - Heart Rate and Barometers
    • Lab 5 - Virtual Neuron Lab
    • Case Study One
  • Anat & Physio
    • The Muscular System Portal
    • The Integumentary System a&p
      • The Epidermis
      • The Dermis
      • The Epidermis rio
      • Connective Tissue
  • Biology of Human Pregnancy
    • Course Calendar - BIO 3070
    • Bio of Pregnancy - SYLLABUS
    • Course Information
    • Evolution of Human Pregnancy
    • History of Human Pregnancy
    • Myths of Pregnancy and Fertility
    • Female Reproductive System
    • The Menstrual Cycle
    • The Male Reproductive System and Male Contraception
    • Fertility and Conception
    • In-Vitro Fertilization
    • Infertility
    • Genetics of Reproduction
    • Prenatal and Maternity Care
    • The Pregnant Body
    • fetal development
    • Development of the Nervous System
    • Stages of Labor
    • Postpartum Issues
    • Twins
  • Chemistry
    • pH Lab
    • The Chemistry of Cells - ORGANIC
      • VOLCANO LAB
    • Volcano Project
  • College/Life Skills
    • Online Professionalism
    • Advising Resources
    • INTERVIEW SKILLS AND RESUME WRITING
    • DIVERSITY
    • CAMPUS EVENTS
      • Predation
    • Time Management
  • Environmental Science
    • MIDTERM 2 STUDY GUIDE
    • Exam 2 Study Guide
    • ENVS 105 Home Page
      • Midterm 3 Study Guide Population Ecology
      • Ecology II - Communities and Ecosystems
      • Module 1 Assignments
      • Module 2 Assignments
    • Inrtoduction to ENV SCI
    • Historical Perspective of ​Environmental Science
    • Biomes
    • FOOD CHAIN and FOOD WEB
    • Biogeochemical Recycling
    • Evolution - Our Beginning
    • Genetic Inheritance
    • Evolution: How Populations Change over Time
    • Symbiosis
    • Population Ecology
    • Competition in Nature
    • Herbivory
    • Niches
    • Fossil Fuels
  • Environmental Biology Laboratory
    • SOILS AND GROUNDWATER
    • Ecological Roles of Living Organisms
      • The Basics
      • Bacteria - Ecological Roles
      • Protists - Ecological Roles
      • Fungus - Ecological Roles
      • Plantae and Animalia - Ecological Roles
    • Virtual FIELD TRIP TO THE RIO HONDO COLLEGE ​WILDLIFE SANCTUARY - Adaptations to Dry Climates
    • Microscopic Plant Adaptations
    • Natural Selection
    • GROWTH CURVES
    • SOILS AND GROUNDWATER
    • LC50 and LD50
    • How to Make a Solar Water Heater
    • WATER QUALITY ANALYSIS
  • General Biology
    • Characteristics of Life
    • Chemistry of Life - Inorganic
    • The Chemistry of Cells - ORGANIC
    • Introduction to The Cell
    • Photosynthesis and cellular Respiration
    • Cell Membranes and Osmosis
    • The Cell Cycle
    • REGULATION of The Cell Cycle
    • Mitosis
    • Meiosis
    • The Structure of DNA
    • Evolution
  • General Biology Laboratory
    • GENERAL BIOLOGY 101 LABORATORY HOME PAGE
      • Enzymes
      • OSMOSIS LAB
      • Lab 1 - Bacteria, Protista and Fungi
      • Lab 2 - Plantae and Animalia
      • Photosynthesis
      • Lab 5 - Introduction to Cells
      • Lab 6 - The Chemistry of Cells
      • Lab 7 - Membrane Transport
      • Lab 8 - Enzymes
      • Lab 9 - Photosynthesis
      • Lab 10 Fermentation, Aerobic Cellular Respiration and Associated Major Organ Systems
    • GENERAL BIO 1110L Labs
      • lab 2 - CELLS - BIO 111L
      • lab 3 - DIFFUSION and OSMOSIS - BIO 111L
      • lab 4 - The Circulatory System - BIO 111L
      • lab 6 - Photosynthesis and Cellular Respiration
      • lab 7 - Reproduction - BIO 111L
      • DNA, GENES AND GENETIC INHERITANCE
      • lab 9 - GENE EXPRESSION AND PROTEIN SYNTHESIS
      • lab 10 - ADAPTATIONS - BIO 111L
      • lab 11 - ECOSYSTEMS AND BIODIVERSITY
  • Human Biology
    • A History of Human Biology
    • Levels of Organization
    • The Chemistry of Cells - ORGANIC
    • Cells
    • Cartilage SAC
    • BONES AND SKELETAL TISSUES
  • Human Biology Lab
    • Testing for Sugar, Starch and Proteins
    • Osmosis, Diffusion and Filtration
    • buffers
    • OSMOSIS LAB
    • Anatomical Planes
    • Body Cavities and Membranes
    • Anatomical Positions
    • The Appendicular Skeleton
    • The SKULL
    • the Thoracic Cage
    • the vertebral column
  • Human Sexuality
    • Course Information
    • Course Calendar
    • Lesson 1 - Introduction to Human Sexuality
    • Lesson 2 - Genetic Inheritance of Human Sexuality
    • Lesson 3 - The Male Reproductive Tract
    • Lesson 4 - The Female Reproductive Tract
    • Lesson 5 - The Menstrual Cycle
    • Midterm Exam Study Guide
    • Lesson 6 - Fetal Development and Sexual Differentiation
    • Lesson 7 - Disorders of Sexual Development
    • Lesson 8 - Gender Identity and Sexual Attraction
    • Lesson 9 - Fetishism
    • Lesson 10 - Sexuality Throughout the World
    • ​Lesson 11 - Sexuality Through the Ages
    • Lesson 12 - Sexual Harassment, Coercion and Violence
    • Final Exam Study Guide
  • Microbiology PORTAL
    • Microbiology - CPP
      • ​Intro to Microorganisms
      • Diseases
      • EPIDEMIOLOGY
      • HOST DEFENSES
      • PATHOGENICITY
      • History of Microbiology
      • Levels of Organization cpp
      • Bacteria versus Archaea
      • Intro. to Bacteria
      • Viruses and Prions
      • Microbial Genetics
      • Microbial Nutrition and Growth
        • Nutritional Categories
        • Microbial Metabolism
        • CONTROL OF BACTERIA GROWTH AND ANTIBIOTICS
      • Eukaryotic Organisms
      • Archaeal Diversity
      • Prokaryotic and Eukaryotic Cells
      • Bacteria vs Archaeal Structures
      • Taxonomic Classifications
      • Archaea, Bacteria and Eukaryotic Cells
      • MIC- CPP Course Calendar
    • Cell Theory
    • Chemistry of Life
      • Chemical Bonds
      • Chemical Reactions
    • Biofilms
    • Definition of Terms
  • Microbiology Laboratory
    • Cell Culture and Inoculations
    • aseptic technique
    • WET MOUNT
    • Streak Plate
    • Mannitol salt agar (MSA) Test
    • Eosin Methylene Blue (EMB)
    • Blood Agar
    • Dilution Series and Calculations
    • Phage Plaque Assay
    • MICROBIOLOGY UNKNOWN LAB
    • Microbiology Lab -study guide exam one
    • Ex 2 - Microorganisms
    • EX 3 - aseptic technique
    • Ex 4 - Smear Prep
    • Ex 5 - Simple Stains
    • Ex 6 - Negative Staining
    • Ex 8 - Gram Stain
    • Ex 9 - Acid-Fast Stain
    • Ex 10 - Endospore Stain
    • Ex 11 - Motility Test
    • ex 12 -​ Pure culture technique
    • ex 13 - UV Radiation
    • Ex 14 - Enumeration of Bacteria : Standard Plate Count
    • ex - 15 Effects of Temperature on Growth
    • ex 16 - Hand-washing
    • ex 17 - pH and microbial growth
    • ex 18 - Evaluation of Antiseptics
    • ex 19 - Antibiotic Sensitivity : Kirby-Bauer Method
  • HISTOTECHNOLOGY
  • The Brain
  • The Brain
  • The Structure of DNA
  • Contact
  • FUN ZONE
    • GAMES
    • Video Vault
    • Population Ecology - ACTIVITY
    • The Carbon Cycle - ACTIVITY
    • Evolution - ACTIVITY
    • The Cell Game
    • SYMBIOSIS ACTIVITY
    • THE LORAX ACTIVITY
    • Brittney the Kidney
    • From Soup to Poop
    • MITOSIS - THE NURSERY RHYME
    • Verne the Sperm and friends
      • Verne the Sperm pg1
        • Verne the Sperm pg2
        • Verne the Sperm pg3
        • Verne the Sperm pg4
        • Verne the Sperm pg5
  • Lab 6 - The Chemistry of Cells
  • A History of Anatomy
  • List of Pages
    • Microscopes
  • Cell Membranes and Osmosis
  • Chemistry of Life
  • Muscle Movements
  • The Muscles of the Head, Trunk and Shoulders
  • The Muscles of the Limbs
  • Nervous Tissue
  • The Brain - Anat and Physiology
  • Instructions for Taking BIO 3070
  • MTH 121 Algebra A - Course Schedule and Info
  • Laboratory Calendar CMC Spring 2019
  • Genetics Lab
  • Chemistry and Conversions Lab
  • Digestion and Enzymes Lab
  • Endocrine and Homeostasis Lab
  • Muscles and Reflexes Lab
  • Sensory Lab
  • Immunohistochemistry
  • Blood Lab
  • Heart Rate, Blood Pressure, Electrocardiogram Lab
  • Respiratory Lab
  • Lab 11 Renal Lab
  • Blood Typing Game
  • Body Systems Interactive
  • Ch 9 - The Central Nervous System
  • Ch 10 - Sensory Systems
  • Neuron Virtual Laboratory
  • Virtual Eye Lab
  • Virtual pH Lab
  • Chemical Bonds Virtual Lab
  • Beer's Law Virtual Lab
  • Build-an-Atom Virtual Lab
  • Diffusion Virtual Lab
  • Ohm's Law Virtual Lab
  • New Page
  • Ch 8 - Nervous System

​CELLS  - BIO 111L

BIO 111L Lab 2

WHAT ARE THE FUNDAMENTAL UNITS OF LIFE?

go to the bio 111L labs home page

Watch the Video!

The CELL is the Fundamental Unit of LIFE! ​

All Living Organisms Are Made Up of One or More CELLS. ​
  •  The inside of the cell is filled with fluid and various structures called organelles.
  • The word “organelle” comes from the Latin word meaning “little organs”. 
  • Organelles are small membrane bound structures that have specific functions within the cell
    Cells are Living Compartments.  Organisms can even exist as a single cells. Cells vary in size and shape. 

What are the Different Cell Types?

A subdiscipline of biology called taxonomy, categorizes all lifeforms into 3 broad “domains” of life.
  1. Archaea
  2. Bacteria
  3. Eukarya
Picture
The domains “Archaea” and “Bacteria” are made up entirely of prokaryotic organisms.
The domain “Eukarya” is made up entirely of eukaryotic organisms.
 
Prokaryotic organisms are made up of prokaryotic cells and eukaryotic organisms are made up of eukaryotic cells.
Picture

Prokaryotic Cells vs. Eukaryotic Cells

Picture

A SIDE-BY-SIDE COMPARISON

Prokaryotic cells... 
  • ​DO NOT have a membrane-bound nucleus
  • DO NOT have membrane-bound organelles
  • Smaller and Simpler
  • Has DNA but no nucleus to put it in.
  • Their DNA is packaged into a single circular chromosome.
  • Cellular Division and Reproduction
  • Prokaryotic cells - undergo cellular division using BINARY FISSION
  • Binary fission is used in prokaryotes to create 2 new daughter cells that are genetic clones of the parent cell. This is an example of asexual reproduction.
Eukaryotic cells... 
  • Have a membrane-bound nucleus
  • Have membrane-bound organelles
  • Larger and More Complex
  • Have a membrane-bound nucleus that houses their DNA.
  • Their DNA is packaged into multiple linear chromosomes.
  • Cellular Division and Reproduction
  • Eukaryotic cells - undergo cellular division using MITOSIS
  • Mitosis is used in eukaryotes for growth of an organisms or to replace old, worn-out cells
  • Meiosis is used in eukaryotes to create new genetically diverse organisms through sexual reproduction.

EUKARYOTIC CELLS
​
INCLUDE BOTH PLANT CELLS AND ANIMAL CELLS

Anatomy of a Plant Cell

Picture

Anatomy of an Animal Cell

Picture

THE STRUCTURES AND ORGANELLES OF THE ANIMAL CELL

Regions of the Cell
The 3 Main Regions of the Cell are 
1) Cell Membrane (Plasma Membrane)
2) Cytoplasm (Cytosol and Cytoplasmic Organelles)
​3) Nucleus

Picture



The Cell Membrane (Plasma Membrane)
- The Main Function of the Cell Membrane is PROTECTION -

The cell membrane is also called the plasma membrane. You can think of the membrane as the "skin" of the cell. Anything outside of the cell is considered "extracellular" and the contents inside the cell are considered "intracellular". ​The cell membrane protects the cell by creating a barrier between what is inside the cell and what is outside the cell. The cell membrane is made up of a double layer of phospholipids. Proteins, sugars and lipids are also incorporated into the cell membrane. 
Picture
Cross Section of the Cell Membrane

Picture
Picture








​The cell membrane surrounds the entire cell and act as protection. You can think of the cell membrane as acting like our skin!
          In addition to this, the cell membrane does something our skin can’t do... It regulates what comes into the cell and what goes out of the cell. For this reason, we consider the cell membrane to be “SELECTIVELY PERMEABLE” which means that it allows some substances to enter or exit the cell, but not others. This is a very important function. 

     The Cell Membrane is selectively permeable due to its structure. The cell membrane is made up of a phospholipid bilayer.
             Phospholipid
Picture
​     The phospholipid bilayer of the cell membrane has a unique structure. It is made up of an inner layer and an outer layer of phospholipids that are oriented with their 'tails' facing each other.

     Phospholipids are considered amphiphilic, because they contain a polar, hydrophillic head that consists of a phosphate group and two nonpolar, hydrophobic fatty acid chains as 'tails'.

     When the phospholipids form the cell membrane, the polar, hydrophillic (water-loving) heads are oriented towards the liquid outside the cells (extracellular fluid) and the liquid inside the cell (extracellular fluid).  The tails of the phospholipids are oriented towards each other, away from the liquid, since they are made up of hydrophobic (water-fearing) fatty acid chains. This formation creates a barrier between the extracellular matrix and the intracellular fluid (cytology). ​


Vesicle
The Main Function of the Vesicle is Transport

The vesicle consists of a small amount of fluid (and sometimes particles) surrounded by a phospholipid bilayer. This bilayer is made up of the same phospholipids that are found in the cell membrane of the plasma membrane. This is due to the fact that vesicles are actually made from the cell membrane itself!

Vesicles move larger particles (like proteins) or large amounts of molecules (like neurotransmitters) across the membrane via endocytosis and exocytosis. Vesicles are also used within the cell to transport substances from one area to another. 

via GIPHY

Picture
By SuperManu - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2918850

Nucleus
The Main Function of the Nucleus is to Hold the DNA.

Picture
The structure of the nucleus -
The nucleus is surrounded by the nuclear envelope
, which is essentially a membrane (a phospholipid bilayer) that compartmentalizes (or separates) the nucleus from the rest of the cell. The nuclear envelope is similar to the cell membrane, except that it contains more pores. The pores allow substances like ribosomes to pass through. The nuclear envelop is selectively permeable.

The liquid inside of the nucleus is called the nucleoplasm. The nucleoplasm is separated from the cytosol of the cell.

Picture
     


​The main function of the nucleus is to house the DNA. DNA is associated with histone proteins that act to package the DNA into bundles. The name for the collection of DNA and histone proteins is 
chromatin. The DNA holds the instructions for protein synthesis (as well as other instructions for the cell).  

​     DNA stands for deoxyribonucleic acid. It is the "instruction manual" for the cell. The primary function of the DNA is to provide the instructions for protein synthesis to the cell through the processes of transcription and translation. ​


Nucleolus
The Main Function of the Nucleolus is to Make Ribosomes

Picture
The nucleolus is located inside of the nucleus. It is the largest structure residing inside of the nucleus. Its primary function is to make ribosomes. The ribosomes then leave the nucleus through one of the nuclear pores. Ribosomes function as the site of protein synthesis for the cell. 

The nucleolus is usually visible as a darkened area lying within the cell's nucleus, as you can see in the electron micrograph.


Picture
















Electron Micrograph of a nucleus and nucleolus in an animal cell.


By Image from An Owner's Guide to the Cell // National Institute of General Medical Sciences, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2101429


Ribosomes
The Main Function of a Ribosome is to Be the Site of Protein Synthesis.

Picture
​

















​After the ribosome is assembled (made) in the nucleolus, it leaves the nucleus. Some ribosomes will end up as "free ribosomes" that remain unattached in the cytosol. Other ribosomes will attach to the nearby Rough Endoplasmic Reticulum.

All ribosomes function as "the site of protein synthesis".  Free ribosomes are used as the site for making water-soluble proteins, whereas the ribosomes that are attached to the rough endoplasmic reticulum act as the site for making proteins that will either be incorporated into the cell membrane or will be transported out of the cell (via exocytosis). 


Picture
The  ribosome is the location of the assembly of the amino acid sequence that makes up the protein. mRNA is used as a template for the amino acids that are to be used.

The ribosome is composed of two subunits that are made of ribosomal RNA (rRNA) and protein. 

The Rough Endoplasmic Reticulum
(The Rough ER) - The main function of the rough ER is to house the ribosomes

There are 2 types of endoplasmic reticulum (ER); the rough endoplasmic reticulum and the smooth endoplasmic reticulum. ​
The Rough Endoplasmic Reticulum 
(The Rough ER)

Picture
The rough ER gets its name from its 'bumpy' or 'rough' appearance  due to ribosomes that are attached to it. In the rough ER, ribosomes are assembled in the nucleolus and then exit the nucleus. Some of these ribosomes then attach themselves to the rough endoplasmic reticulum, where they will act as a "site of protein synthesis" for the cell. ​
Picture
http://www.amoebasisters.com/gifs.html
The rough ER is composed of a network of membranous sacs or envelopes  and tubules. The outside of the rough ER appears 'rough' due to attached ribosomes.  

The Smooth Endoplasmic Reticulum
​(The Smooth ER)
The Main Function of the Smooth ER is to Make Lipids

     The smooth endoplasmic reticulum (Smooth ER) appears smooth in comparison to the rough ER. This is because the smooth ER does not have ribosomes bound to it. The structure of the smooth ER is similar to that of the rough ER in the fact that it is composed of a membranous system of sacs or envelopes and tubules. Its structure differs in the fact that it appear smooth since it does not have ribosomes attached to it.

​     The smooth ER's main function is to make lipids. The smooth ER also functions to synthesize steroid hormones, metabolize lipids and even acts assists in detoxification of the cell. 
Picture
    


Lysosome
The Main Function of the Lysosome is to Digest Biological Matter

Picture
Picture
A lysosome is a membrane-bound cytoplasmic organelle that contain enzymes that can break down different biomolecules. The lysosome works to digest substances in a similar way that our own stomach does.

The Golgi Body
​(Golgo Apparatus)
The Main Function of the Golgi Body is to Package and Ship Proteins

Picture
The Golgi body functions to Modify, Package and Ship proteins! The Golgi body is able to sort the incoming proteins and can tell where their final destination should be. These proteins could be destined for a number of destination including secretion from the cell, inclusion in lysosomes, or incorporation into the plasma membrane.
Picture
​The Golgi Apparatus is made up of 3 – 10  “envelopes” called cisternae.
     
     You can think of the Golgi body as the Post Office of the cell. After proteins are made at the ribosome, the proteins travel to the Golgi body. The Golgi body will modify the proteins with strings of amino acid sequences (called signaling sequences) that will tell the cell where the protein is going to go! You can think of this process as "gift wrapping" and "placing a shipping label" on the protein! 

The Mitochondria
The Main Function of the Mitochondria is to Make Energy in the Form of ATP for the Cell

Picture
     The mitochondrion is the "power house" or "engine" of the cell. Our mitochondria make energy in the form of ATP (adenosine triphosphate) that our cells can use. 
Picture

The Peroxisome
The Main Function of the Peroxisome is to Detoxify the Cell

Picture
​The peroxisome is a small round cytoplasmic organelle that functions to detoxify the cell. The peroxisome houses oxidase enzymes inside of membranous sacs. These enzymes act to catalyze the breakdown of harmful substances to the cell.

Free radicals are specific forms of molecules that contain an electron which can be eaily removed from it and can cause unwanted reactions to occur within the cell. The most important enzyme for the peroxisome is catalase, which is used to break down the free radical,  hydrogen peroxide.

This is where the peroxisome gets its name!


Cytoskeleton- Centrosomes, Centrioles, and Microtubules

The cytoskeleton of the cell provides structure to the cell, in a similar way that our own skeleton gives us shape! In addition to structure, the cytoskeleton acts as a scaffolding within the cell that can be used to anchor certain organelles in place or as a roadway for molecules to travel on. Another main function of the centrosome and microtubules is seen during the cell cycle and mitosis (cell division). 
Picture
The centrosome organizes microtubules into a functional unit.  It has a vital role in mitosis (cell division) in which the centrosomes act to form the mitotic spindle with microtubules. This spindle apparatus then connects to chromosomes, lines them up at the metaphase plate during  metaphase, and then acts to pull sister chromatids to opposite sides of the cell during anaphase.

​The centrosomes are also involved in cytokinesis which is the final step in mitosis. The microtubules will function to pinch off the last remaining point of contact between the soon-to-be daughter cells.  


Picture
The entire structure in the illustration above is the centrosome. The centrosome is made up of two centrioles and several associated proteins. Each centriole of the centrosome is made up of nine "triplet microtubules". which radiate outward. This configuration gives the centrosome the "cartwheel structure" that is clearly recognizable. ​

A Few Words About the Plant Cell

​•Plant and animal cells are very similar because they are both eukaryotic cells.

•Plant cells have a lot of the same organelles as animal cells do.

•Plant cells also have a few additional organelles that animal cells do not have.

These are…
​
  1. The Cell Wall
  2. Chloroplasts
  3. Vacuoles
Picture

Cell Wall

Picture

•Surrounds plasma membrane
•Function in support, rigidity, and protection
•Composed of complex carbohydrate-cellulose
•Is found in plant cells, but not animal cells. 

Chloroplasts

•Chloroplasts are specialized organelles that allow for photosynthesis to take place.
•Chloroplasts are found in plants cell, but not in animal cells.
•The chloroplast is able to carry out photosynthesis for the plant, because it has a chemical called chlorophyll.
•Chlorophyll is a photosynthetic pigment that converts energy from the sun into sugar, which can then be used to make energy for the plant in the form of ATP. 
Picture
Picture

The Central Vacuole

Picture
​•The central vacuole a large fluid-filled  organelle in plant cells
•The fluid inside of the vacuole  functions to hold materials and waste products of the cell.
•The vacuole functions to maintain the proper pressure (turgor pressure) within the plant, that allows it to stand up against gravity.

Summary of Structure and Function of Organelles

ORGANELLE or STRUCTURE
FUNCTION
SIMILAR TO
NUCLEUS
HOLDS THE DNA
INSTRUCTION MANUAL
NUCLEOLUS
MAKES RIBOSOMES
FACTORY FOR RIBOSOMES
MEMBRANE
PROTECTION - REGULATION OF TRANSPORT
SKIN
GOLGI BODY
MODIFIES, PACKAGES AND SHIPS PROTEINS
POST OFFICE
MITOCHONDRIA
CREATES ENERGY (ATP)
POWER PLANT
ROUGH ENDOPLASMIC RETICULUM
HOLD RIBOSOMES
ASSEMBLY LINE
SMOOTH ENDOPLASMIC RETICULUM
LIPID PRODUCTION 
   FACTORY FOR LIPIDS
PEROXISOME
DETOXIFIES
GARBAGE DISPOSAL
LYSOSOME
DIGESTS UNWANTED SUBSTANCES
STOMACH / RECYCLING CENTER
RIBOSOME
THE SITE OF PROTEIN SYNTHESIS
ASSEMBLY LINE
NUCLEOPLASM
LIQUID OF THE NUCLEUS
      FLUID
NUCLEAR ENVELOPE
MEMBRANE AROUND THE NUCLEUS
"SKIN" OF NUCLEUS
VESICLES
TRANSPORTATION
VEHICLES
CYTOSOL
LIQUID OF THE CELL  THAT LIES INSIDE OF THE CELL MEMBRANE, AND OUTSIDE THE NUCLEUS
    OUR INTERSTITIAL FLUID


Summary of Terms


CENTROSOME Region close to the nucleus in eukaryotic cells. It is an area involved in the development of microtubules (often referred to as a microtubule organizing center) that are necessary for cell movements, e.g. the mitotic spindle. Each pole of the spindle of a dividing nucleus would have a centrosome. In animal cells and most plants and fungi with motile cells, the centrosome contains a pair of centrioles.  CENTRIOLES A short cylindrical array of nine triplet microtubules. Found in animal cells and cells of most eukaryotic organisms that produce flagellate cells. 

CHROMATIN Complex of the DNA and proteins, such as histones, in the nucleus of a eukaryotic cell.

CYTOPLASM All the material and organelles inside the plasma membrane and outside of the nucleus.

CYTOSOL Everything in the cytoplasm other than the membranebounded organelles.

ENDOPLASMIC RETICULUM The endoplasmic reticulum (ER) consists of flattened sheets, sacs and tubes that extend through the cytoplasm. The sheets may be continuous with the outer membrtme of the nuclear envelope. If the ER is studded with ribosomes that are synthesizing proteins, it is called rough ER. In contrast, smooth ER lacks ribosomes and is involved in lipid synthesis.

GOLGI BODY A system of stacked, membrane-bounded sacs. The Golgi is involved in processing macromolecules for secretion and delivery to other components of the cell.

LYSOSOMES Membrane-bounded vesicles that contain enzymes involved in the digestion of foreign elements. Conditions that result in the release of these enzymes into the cytoplasm may result in cell death.

MITOCHONDRIA Organelles present in eukaryotic cells and bounded by two membranes. They are often referred to as the power plants of cells as they are the site of aerobic respiration that combines oxygen with food molecules to generate ATP, an important energy containing molecule. Mitochondria contain circular DNA (similar to the organization of DNA in bacterial cells) that codes for some of the mitochondria! proteins. Ribosomes in mitochondria are smaller than those in the cytosol and of the same size as bacterial ribosomes.

NUCLEAR ENVELOPE The double membrane structure that surrounds the nucleus and separates it from the rest of the cytoplasm. It has nuclear pores that allow for communication between the nucleus and the cytoplasm. NUCLEAR PORES Openings in the nuclear envelope that allow for communication between the nucleus and the cytoplasm.

NUCLEOLUS Site in the nucleus where ribosomes are synthesized. NUCLEOPLASM Matrix of the nucleus, not including nucleolus and chromosomes.

NUCLEUS This is the largest organelle in most cells. It is separated from the cytoplasm by the nuclear envelope that consists of an inner and outer membrane layer. Nuclear pores in the envelope allow the nucleus to communicate with the cytoplasm. The nucleus contains most of the cell's genetic material in the DNA that makes up the chromatin fibers of the chromosomes. The nucleolus is in the nucleus and it is the site at which ribosomes are assembled.

PEROXISOMES Membrane-bounded vesicles that contain oxidative enzymes concerned with the generation and destruction of hydrogen peroxide, a molecule that would cause serious damage if it were released into the cytoplasm

PLASMA MEMBRANE The outer boundary of the cell; also called the cell membrane. A sheet of lipid molecules (bilayer) with proteins embedded in it. The plasma membrane controls movement of materials into and out of the cytoplasm.

RIBOSOMES Particles composed of RNA and protein that are involved with messenger RNA in the synthesis of proteins. 

Curious About ScientistCindy?

Location

Upland, CA
​USA

WebSite

WWW.ScientistCindy.Com
WWW.PhunnyPhysiology.Com
WWW.BiologicalSciencesUniversity.Com

Email

ABOUT
Send email inquiries to ScientistCindy@gmail.com
  • Home
  • Anatomy
    • Anatomy - CMC Home Page
      • Practical Exam #2 REDEMPTION EXAM!
      • Practical Exam #3
      • Practical Exam #4
      • Practical Exam #5
      • Practical Exam #6
      • Lab Quiz 4
      • Lab Quiz 5
    • Anatomy Basics
      • Intro to Anatomy
      • Medical Terminology
      • A History of Anatomy
      • Levels of Organization
      • Anatomical Positions
      • Anatomical Planes
      • Anatomical Regions
      • Body Cavities and Membranes
    • Cells Portal
      • Anatomy of the Cell SAC
      • Membrane Transport
      • The Cell Cycle
      • REGULATION of The Cell Cycle
      • BLOOD CELLS
      • mitosis
    • Tissues Portal SAC
      • The Integumentary System
      • Epithelial Tissues
      • Connective Tissue
      • Muscle Tissue
      • BONES AND SKELETAL TISSUES
      • Cartilage SAC
    • Organ Systems
    • Portal to the Skeletal system
      • The SKULL ANATOMY
      • the Thoracic Cage
      • the vertebral column
      • The Appendicular Skeleton
      • BONES AND SKELETAL TISSUES
      • joints
    • The Muscular System Portal
      • Muscle Tissue
      • Muscles - Intramuscular Injection Sites - WCU
      • Muscles of the Body - Review
    • The Nervous System
      • Introduction to the Nervous System
      • Nervous Tissue
      • The Brain - Anat
      • The Ear - Sensory Organs
      • The Eye - Sensory Organs
    • THE REPRODUCTIVE SYSTEM
    • The Renal System
    • The Respiratory System
    • THE CIRCULATORY SYSTEM PORTAL
      • Intro to the Circulatory System
      • THE HEART
      • HEART DISSECTION PHOTO GALLERY
      • THE VESSELS OF BLOOD CIRCULATION
    • Digestive System
    • Animal Dissection (Virtual)
    • dissection of the fetal pig
  • Physiology
    • Homeostasis - Physio
    • Chemical Reactions - Physio
    • Chemistry of Life - Inorganic - Physio
    • The Chemistry of Cells - ORGANIC - Physio
    • Chemical Bonds - Physio
    • Metabolism - Physio
    • Portal to the Skeletal system
    • Endocrine and Homeostasis physio
    • Muscle Physiology
    • Blood
    • Cardiovascular System
    • Lymphatic System
    • Respiratory System Physiology
    • Renal System
    • Digestive System
    • Reproductive System
  • CMC Physiology Lab
    • Lab 1 - Surface Area to Volume Ratios
    • Lab 2 - Osmosis
    • Lab 4 - Heart Rate and Barometers
    • Lab 5 - Virtual Neuron Lab
    • Case Study One
  • Anat & Physio
    • The Muscular System Portal
    • The Integumentary System a&p
      • The Epidermis
      • The Dermis
      • The Epidermis rio
      • Connective Tissue
  • Biology of Human Pregnancy
    • Course Calendar - BIO 3070
    • Bio of Pregnancy - SYLLABUS
    • Course Information
    • Evolution of Human Pregnancy
    • History of Human Pregnancy
    • Myths of Pregnancy and Fertility
    • Female Reproductive System
    • The Menstrual Cycle
    • The Male Reproductive System and Male Contraception
    • Fertility and Conception
    • In-Vitro Fertilization
    • Infertility
    • Genetics of Reproduction
    • Prenatal and Maternity Care
    • The Pregnant Body
    • fetal development
    • Development of the Nervous System
    • Stages of Labor
    • Postpartum Issues
    • Twins
  • Chemistry
    • pH Lab
    • The Chemistry of Cells - ORGANIC
      • VOLCANO LAB
    • Volcano Project
  • College/Life Skills
    • Online Professionalism
    • Advising Resources
    • INTERVIEW SKILLS AND RESUME WRITING
    • DIVERSITY
    • CAMPUS EVENTS
      • Predation
    • Time Management
  • Environmental Science
    • MIDTERM 2 STUDY GUIDE
    • Exam 2 Study Guide
    • ENVS 105 Home Page
      • Midterm 3 Study Guide Population Ecology
      • Ecology II - Communities and Ecosystems
      • Module 1 Assignments
      • Module 2 Assignments
    • Inrtoduction to ENV SCI
    • Historical Perspective of ​Environmental Science
    • Biomes
    • FOOD CHAIN and FOOD WEB
    • Biogeochemical Recycling
    • Evolution - Our Beginning
    • Genetic Inheritance
    • Evolution: How Populations Change over Time
    • Symbiosis
    • Population Ecology
    • Competition in Nature
    • Herbivory
    • Niches
    • Fossil Fuels
  • Environmental Biology Laboratory
    • SOILS AND GROUNDWATER
    • Ecological Roles of Living Organisms
      • The Basics
      • Bacteria - Ecological Roles
      • Protists - Ecological Roles
      • Fungus - Ecological Roles
      • Plantae and Animalia - Ecological Roles
    • Virtual FIELD TRIP TO THE RIO HONDO COLLEGE ​WILDLIFE SANCTUARY - Adaptations to Dry Climates
    • Microscopic Plant Adaptations
    • Natural Selection
    • GROWTH CURVES
    • SOILS AND GROUNDWATER
    • LC50 and LD50
    • How to Make a Solar Water Heater
    • WATER QUALITY ANALYSIS
  • General Biology
    • Characteristics of Life
    • Chemistry of Life - Inorganic
    • The Chemistry of Cells - ORGANIC
    • Introduction to The Cell
    • Photosynthesis and cellular Respiration
    • Cell Membranes and Osmosis
    • The Cell Cycle
    • REGULATION of The Cell Cycle
    • Mitosis
    • Meiosis
    • The Structure of DNA
    • Evolution
  • General Biology Laboratory
    • GENERAL BIOLOGY 101 LABORATORY HOME PAGE
      • Enzymes
      • OSMOSIS LAB
      • Lab 1 - Bacteria, Protista and Fungi
      • Lab 2 - Plantae and Animalia
      • Photosynthesis
      • Lab 5 - Introduction to Cells
      • Lab 6 - The Chemistry of Cells
      • Lab 7 - Membrane Transport
      • Lab 8 - Enzymes
      • Lab 9 - Photosynthesis
      • Lab 10 Fermentation, Aerobic Cellular Respiration and Associated Major Organ Systems
    • GENERAL BIO 1110L Labs
      • lab 2 - CELLS - BIO 111L
      • lab 3 - DIFFUSION and OSMOSIS - BIO 111L
      • lab 4 - The Circulatory System - BIO 111L
      • lab 6 - Photosynthesis and Cellular Respiration
      • lab 7 - Reproduction - BIO 111L
      • DNA, GENES AND GENETIC INHERITANCE
      • lab 9 - GENE EXPRESSION AND PROTEIN SYNTHESIS
      • lab 10 - ADAPTATIONS - BIO 111L
      • lab 11 - ECOSYSTEMS AND BIODIVERSITY
  • Human Biology
    • A History of Human Biology
    • Levels of Organization
    • The Chemistry of Cells - ORGANIC
    • Cells
    • Cartilage SAC
    • BONES AND SKELETAL TISSUES
  • Human Biology Lab
    • Testing for Sugar, Starch and Proteins
    • Osmosis, Diffusion and Filtration
    • buffers
    • OSMOSIS LAB
    • Anatomical Planes
    • Body Cavities and Membranes
    • Anatomical Positions
    • The Appendicular Skeleton
    • The SKULL
    • the Thoracic Cage
    • the vertebral column
  • Human Sexuality
    • Course Information
    • Course Calendar
    • Lesson 1 - Introduction to Human Sexuality
    • Lesson 2 - Genetic Inheritance of Human Sexuality
    • Lesson 3 - The Male Reproductive Tract
    • Lesson 4 - The Female Reproductive Tract
    • Lesson 5 - The Menstrual Cycle
    • Midterm Exam Study Guide
    • Lesson 6 - Fetal Development and Sexual Differentiation
    • Lesson 7 - Disorders of Sexual Development
    • Lesson 8 - Gender Identity and Sexual Attraction
    • Lesson 9 - Fetishism
    • Lesson 10 - Sexuality Throughout the World
    • ​Lesson 11 - Sexuality Through the Ages
    • Lesson 12 - Sexual Harassment, Coercion and Violence
    • Final Exam Study Guide
  • Microbiology PORTAL
    • Microbiology - CPP
      • ​Intro to Microorganisms
      • Diseases
      • EPIDEMIOLOGY
      • HOST DEFENSES
      • PATHOGENICITY
      • History of Microbiology
      • Levels of Organization cpp
      • Bacteria versus Archaea
      • Intro. to Bacteria
      • Viruses and Prions
      • Microbial Genetics
      • Microbial Nutrition and Growth
        • Nutritional Categories
        • Microbial Metabolism
        • CONTROL OF BACTERIA GROWTH AND ANTIBIOTICS
      • Eukaryotic Organisms
      • Archaeal Diversity
      • Prokaryotic and Eukaryotic Cells
      • Bacteria vs Archaeal Structures
      • Taxonomic Classifications
      • Archaea, Bacteria and Eukaryotic Cells
      • MIC- CPP Course Calendar
    • Cell Theory
    • Chemistry of Life
      • Chemical Bonds
      • Chemical Reactions
    • Biofilms
    • Definition of Terms
  • Microbiology Laboratory
    • Cell Culture and Inoculations
    • aseptic technique
    • WET MOUNT
    • Streak Plate
    • Mannitol salt agar (MSA) Test
    • Eosin Methylene Blue (EMB)
    • Blood Agar
    • Dilution Series and Calculations
    • Phage Plaque Assay
    • MICROBIOLOGY UNKNOWN LAB
    • Microbiology Lab -study guide exam one
    • Ex 2 - Microorganisms
    • EX 3 - aseptic technique
    • Ex 4 - Smear Prep
    • Ex 5 - Simple Stains
    • Ex 6 - Negative Staining
    • Ex 8 - Gram Stain
    • Ex 9 - Acid-Fast Stain
    • Ex 10 - Endospore Stain
    • Ex 11 - Motility Test
    • ex 12 -​ Pure culture technique
    • ex 13 - UV Radiation
    • Ex 14 - Enumeration of Bacteria : Standard Plate Count
    • ex - 15 Effects of Temperature on Growth
    • ex 16 - Hand-washing
    • ex 17 - pH and microbial growth
    • ex 18 - Evaluation of Antiseptics
    • ex 19 - Antibiotic Sensitivity : Kirby-Bauer Method
  • HISTOTECHNOLOGY
  • The Brain
  • The Brain
  • The Structure of DNA
  • Contact
  • FUN ZONE
    • GAMES
    • Video Vault
    • Population Ecology - ACTIVITY
    • The Carbon Cycle - ACTIVITY
    • Evolution - ACTIVITY
    • The Cell Game
    • SYMBIOSIS ACTIVITY
    • THE LORAX ACTIVITY
    • Brittney the Kidney
    • From Soup to Poop
    • MITOSIS - THE NURSERY RHYME
    • Verne the Sperm and friends
      • Verne the Sperm pg1
        • Verne the Sperm pg2
        • Verne the Sperm pg3
        • Verne the Sperm pg4
        • Verne the Sperm pg5
  • Lab 6 - The Chemistry of Cells
  • A History of Anatomy
  • List of Pages
    • Microscopes
  • Cell Membranes and Osmosis
  • Chemistry of Life
  • Muscle Movements
  • The Muscles of the Head, Trunk and Shoulders
  • The Muscles of the Limbs
  • Nervous Tissue
  • The Brain - Anat and Physiology
  • Instructions for Taking BIO 3070
  • MTH 121 Algebra A - Course Schedule and Info
  • Laboratory Calendar CMC Spring 2019
  • Genetics Lab
  • Chemistry and Conversions Lab
  • Digestion and Enzymes Lab
  • Endocrine and Homeostasis Lab
  • Muscles and Reflexes Lab
  • Sensory Lab
  • Immunohistochemistry
  • Blood Lab
  • Heart Rate, Blood Pressure, Electrocardiogram Lab
  • Respiratory Lab
  • Lab 11 Renal Lab
  • Blood Typing Game
  • Body Systems Interactive
  • Ch 9 - The Central Nervous System
  • Ch 10 - Sensory Systems
  • Neuron Virtual Laboratory
  • Virtual Eye Lab
  • Virtual pH Lab
  • Chemical Bonds Virtual Lab
  • Beer's Law Virtual Lab
  • Build-an-Atom Virtual Lab
  • Diffusion Virtual Lab
  • Ohm's Law Virtual Lab
  • New Page
  • Ch 8 - Nervous System